

Justin Button-Hutchens Project Manager

November 1, 2017

Mr. Andrew Maguire
On-Scene Coordinator
U.S. Environmental Protection Agency Region 5
Superfund Division, SE-5J
77 W. Jackson Boulevard
Chicago, IL 60604

Subject: Final Letter Report

U.S. Steel Hexavalent Chromium Spill ER

Portage, Porter County, Indiana EPA Contract No. EP-S5-13-01

EPA Technical Direction Document (TDD) No. S05-0001-1704-201

Document Tracking No.: 1686

Dear Mr. Maguire:

Tetra Tech, Inc. (Tetra Tech) is submitting this Final Letter Report summarizing the emergency response activities conducted at the U.S. Steel Hexavalent Chromium Spill ER site from April 11 through April 18, 2017. The final report addresses your comments on the draft report that Tetra Tech submitted on June 6, 2017.

If you have any questions regarding this report, please contact me at (312) 201-7771 or justin.button-hutchens@tetratech.com.

Respectfully,

Justin Button-Hutchens Project Manager

Enclosure

cc: Kevin Scott, Tetra Tech Program Manager

TDD File

FINAL LETTER REPORT FOR THE U.S. STEEL HEXAVALENT CHROMIUM SPILL ER SITE PORTAGE, PORTER COUNTY, INDIANA 46368

U.S. Environmental Protection Agency

Emergency Response Branch Region 5 77 W. Jackson Boulevard Chicago, IL 60604

Submitted by

Tetra Tech, Inc.1 South Wacker, 37th Floor Chicago, Illinois
60606

EPA Contract No. EP-S5-13-01

Technical Direction Document No. S05-0001-1704-201 Document Tracking No.: 1686

November 1, 2017

Prepared by

Justin Button-Hutchens Project Manager Approved by

John Dirgo

START QC Reviewer

CONTENTS

Secti	<u>on</u>			Page
1.0	SUM	MARY O	OF EVENTS	1
	1.1	SITE	CONDITIONS AND BACKGROUND	1
		1.1.1	Site Location	1
		1.1.2	Initial Situation	2
		1.1.3	Cause of Release or Discharge	2
		1.1.4	Efforts to Obtain Response by Responsible Party	2
	1.2		ANIZATION OF THE RESPONSE, INCLUDING STATE/LOCAL	2
	1.3	ASSE	SSMENT ACTIVITIES	3
	1.4	CHRC	ONOLOGICAL NARRATIVE OF RESPONSE ACTIONS	3
	1.5	SAME	PLE SHIPMENT	8
	1.6	SAME	PLE ANALYSIS	8
2.0	MON	ITORING	G AND SAMPLING RESULTS	9
	2.1	WATI	ER MONITORING	9
	2.2	WATI	ER SAMPLING	9
	2.3		MENT SAMPLING	
3.0	EFFE	CTIVEN	ESS OF RESPONSE ACTIVITIES	16
4.0	REFE	RENCES	S	17
Appe	<u>endix</u>			
A	FIGU	RES		
В	SUM	MARY 1	ΓABLES	
C			BOOK NOTES	
D			PHIC LOG	
E			ENTALLY PREFERRED PRACTICES	
F	POLI	REPS		

i

Attachment

1 Data Validation Reports

1.0 SUMMARY OF EVENTS

1.1 SITE CONDITIONS AND BACKGROUND

This section provides details on the initial situation and cause of the U.S. Steel Hexavalent Chromium Spill. Under Superfund Technical Assessment and Response Team (START) Contract No. EP-S5-13-01, Technical Direction Document (TDD) No. S05-0001-1704-201, the U.S. Environmental Protection Agency (EPA) tasked Tetra Tech, Inc. (Tetra Tech) START, to perform emergency response (ER) activities at U.S. Steel in Portage, Porter County, Indiana (Appendix A, Figure 1). START was tasked to perform the following:

- Develop a site-specific health and safety plan for on-site activities.
- Perform general oversight that includes written and photographic documentation of site activities.
- Conduct split sample collection with the responsible party (RP) during response activities.
- Track costs related to emergency response activities
- Develop a letter report of activities completed.

This letter report summarizes the activities conducted by Tetra Tech during the ER. Appendix A contains figures illustrating the site location, site layout, surface water sample locations, and sediment sample locations. Appendix B contains the sample summary and results tables. Appendix C provides the START field logbook notes. Appendix D contains the photographic log of response activities. Appendix E provides information on environmentally preferred practices used during this response. Appendix F contains the Pollution/Situation Reports (PolREPs) prepared by EPA during the ER.

1.1.1 Site Location

The site is located on U.S. Steel's Portage Plant at 6300 Highway 12, Portage, Indiana (Appendix A, Figures 1 and 2). The release occurred at Outfall 004 and discharged into the Burns Waterway, a tributary to Lake Michigan. North of Outfall 004, the Burns Waterway feeds into a small harbor which then opens up to Lake Michigan. Approximately 1 mile south of Outfall 004 is a marina used for recreational boating. West of Outfall 004 is Ogden Dunes, a community that resides within the Indiana Dunes National Lakeshore. According to the 2013 census, Ogden Dunes has a population of 1,100.

(b)(9) Geological and Geophysical information and data, including maps, about wells

1.1.2 Initial Situation

At approximately 9:00 central standard time (CST) on April 11, 2017, U.S. Steel employees were doing

their rotations for checking on the outfalls for the facility. Rotations are performed every 2 hours on the

hour. During their check, employees noticed that the water discharging from Outfall 004 had a vibrant

green color.

At 9:33 CST, U.S. Steel notified the National Response Center (NRC) Spill Hotline of the release and

NRC Incident Report #1175399 was created. NRC notified EPA and the U.S. Coast Guard (USCG).

U.S. Steel also notified the Indiana Department of Environmental Management (IDEM), National Park

Services (NPS), and the Porter County Sherriff; and all production processes were shut down.

1.1.3 Cause of Release or Discharge

An assessment of the wastewater treatment plants revealed that process waste water from the Tin and Tin

Free electroplating lines at the U.S. Steel Mill had been released. The wastewater was from the process

used to treat the steel strip after electroplating, and the rinse water from this process is conveyed via pipe

to a dedicated treatment plant. The preliminary investigation by U.S. Steel staff revealed that an

expansion joint in the rinse water pipe failed and resulted in the water being released to a different

wastewater treatment plant and ultimately into the Burns Waterway through Outfall 004. The Burns

Waterway discharges into Lake Michigan, less than 0.25 mile from Outfall 004.

1.1.4 Efforts to Obtain Response by Responsible Party

U.S. Steel was identified as the responsible party for the release of the hexavalent chromium caused by

wastewater treatment plant failure.

1.2 ORGANIZATION OF THE RESPONSE, INCLUDING STATE/LOCAL PARTICIPATION

During the emergency response, Incident Command System (ICS) was utilized to organize response

activities. Unified Command was established and included EPA, NPS, and U.S. Steel. The Unified

Command structure was dissolved on April 18, 2017, and the site was transitioned to IDEM, NPS, and

U.S. Steel.

November 2017

U.S. Steel Hexavalent Chromium Spill ER Final Letter Report

Letter Report TDD No.: S05-0001-1704-201

Tetra Tech, Inc.

2

ORGANIZATION OF RESPONSE					
Agencies or Parties Involved	Contact	Description of Participation			
		Held key roles in ICS structure, including			
U.S. EPA Region 5	Andrew Maguire	serving as the EPA representative within			
U.S. El A Region 5	Andrew Magune	unified command and planning section.			
		Coordinated emergency response actions.			
		Responsible party, participated as U.S.			
	Joseph Hanning	Steel representatives within unified			
U.S. Steel	Brandon Miller	command in response activities;			
	Various	responsible for coordinating contractors'			
		emergency response activities.			
		Participated within unified command and			
National Park Services	Various	performed oversight of START beach			
National Lark Services	Various	sampling during emergency response			
		activities.			
		START contractor, performed oversight of			
Tetra Tech, Inc.	Justin Button-Hutchens	emergency response activities, multimedia			
Tetta Tecti, file.	Various	sampling, mapping, data management, and			
		plan review.			
ALS Global	Various	U.S. Steel contractor responsible for			
ALS Global	v arrous	multimedia sampling.			

1.3 ASSESSMENT ACTIVITIES

Assessment activities were conducted by U.S. Steel, the responsible party, in concurrence with EPA. Government trustees, including EPA and NPS, participated in assessment activities through plan review and approval, oversight, split sampling, and providing recommendations. These activities were generally geared toward determining the extent of potential contamination on the site and in surrounding areas, developing plans for the prevention of public exposure, and reviewing U.S. Steel treatment production start-up plans. Section 1.4 includes discussion of the specific activities that were overseen by government trustees.

1.4 CHRONOLOGICAL NARRATIVE OF RESPONSE ACTIONS

At approximately 9:00 CST on April 11, 2017, U.S. Steel employees were performing their 2-hour rotation for checking the outfalls of the facility. During their check, employees noticed that the water discharging from Outfall 004 had a vibrant green color.

At 9:33 CST, U.S. Steel notified the National Response Center (NRC) Spill Hotline of the release and NRC Incident Report #1175399 was created. EPA on-scene coordinators (OSCs) Beslow and Mendez along with USCG deployed to the release. Upon EPA's arrival, U.S. Steel reported the release to be process wastewater containing hexavalent chromium. OSC Maguire was dispatched to the site shortly

thereafter. USCG demobilized after determining the spill was within EPA's jurisdiction. U.S. Steel also notified IDEM, NPS, Indiana American Water, and the Porter County Sherriff. After the spill was discovered, U.S. Steel stopped operations at the plant. An assessment of the wastewater treatment plants revealed that hexavalent chromium had migrated to a treatment plant that was not equipped to treat it. U.S. Steel later reported that approximately 350 pounds of hexavalent chromium had been released.

START personnel mobilized and arrived on-site at approximately 14:20 CST. START noted initial site observations upon arriving at the site. Outfall 004, where the release occurred, was still discharging water that had a vibrant green color. The outfall discharged directly into Burns Waterway, which serves as a local waterway from Lake Michigan to nearby marinas and eventually merges with the Little Calumet River to the south. The flow of the Burns Waterway is semi-dependent on the tides of Lake Michigan. The waterway generally flows south to north, except when strong southerly tides from Lake Michigan force the current south. START's field notes, photographic documentation, and EPA's PolREPs detailing response activities can be found in Appendices C, D, and F respectively.

The hexavalent chromium released from Outfall 004 is completely soluble in water. Once hexavalent chromium reached the outfall, recovery was not feasible because additional chemicals would have to be added to the water. The toxicity of these additional chemicals prohibited their use in the Burns Waterway. U.S. Steel stopped the active release of chromium from the wastewater treatment plant, but residual hexavalent chromium continued to be present at the discharge and additional steps to mitigate the impact were taken. These steps included the isolation and repair of the damaged pipe, and the addition of a water treatment compound, sodium trithiocarbonate (CNa₂S₃), to the water stored in the wastewater treatment plant to convert hexavalent chromium to less toxic trivalent chromium. U.S. Steel was given permission from IDEM to use this chemical in its treatment plant to help alleviate the immediate threat.

Initial sampling of both the Burns Waterway and Lake Michigan was performed on April 11, 2017. These samples were analyzed at U.S. Steel's on-site laboratory, and then sent for confirmation of results at U.S. Steel's contracted laboratory, ALS Global (ALS). The on-site U.S. Steel laboratory was used for initial screening, and was able to generate results only for total chromium. Total chromium concentrations were assumed to be equivalent to hexavalent chromium concentrations, and results ranged from 2,231 micrograms per liter (μ g/L) at Outfall 004 to 15 μ g/L near the mouth of the Burns Waterway.

The National Oceanic and Atmospheric Administration (NOAA) and U.S. Fish and Wildlife Service (USFWS) provided ecological risk concentrations for hexavalent as low as 2 μ g/L and as high as 20 μ g/L, while the Agency for Toxic Substances and Disease Registry (ATSDR) provided a human health

4

concentration of $6 \mu g/L$. As a precaution, local water utility, Indiana American Water in Ogden Dunes, shut down its intake for the Ogden Dunes community. NPS issued a "No Swimming" advisory and closed the nearby lakefront and beaches.

On April 12, 2017, U.S. Steel, EPA, and other agencies reconvened on site at 08:00. U.S. Steel and START collected 58 water samples from Lake Michigan and Burns Waterway, both upstream and downstream of Outfall 004, for laboratory analysis of hexavalent chromium and total chromium (Appendix A, Figures 3a, 3b, and 3c). Samples were collected from the surface, and from the midpoint between the water surface and the bottom depth of the waterway. U.S. Steel and START also collected 14 sediment samples from seven local beaches for laboratory analysis of hexavalent chromium and total chromium (Appendix A, Figure 4). Sediment samples were collected at the tide break point on the shoreline and at wading depth. A summary of collected samples can be found in Table 1 in Appendix B. U.S. Steel continued monitoring its release from Outfall 004.

On April 13, 2017, U.S. Steel, EPA, and other agencies reconvened on site at 08:00 to continue water and sediment sampling. U.S. Steel and START collected 69 water samples from Lake Michigan and Burns Ditch, both upstream and downstream of Outfall 004, for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START also collected 16 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. A summary table of collected samples can be found in Table 1 in Appendix B. EPA also held a press briefing outside of the U.S. Steel property with several local and regional news outlets in attendance.

On April 14, 2017, U.S. Steel, EPA, and other agencies reconvened on site at 08:00 to continue sampling. U.S. Steel and START collected 87 water samples from Lake Michigan and Burns Waterway. Samples were collected upstream and downstream of Outfall 004, at various locations on Lake Michigan, and along the shoreline of the local beaches. Water samples were submitted for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START also collected 16 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. A summary table of collected samples can be found in Table 1 in Appendix B. U.S. Steel began a heavily monitored re-start process of its plating operations, and reintroduced hexavalent chromium to the process line in defined steps, starting on April 14 and continuing through April 17, 2017. U.S. Steel and EPA monitored this process closely by having visual observing the discharge from Outfall 004. U.S. Steel collected samples at various process points within the wastewater treatment plant. U.S. Steel sent the samples to ALS, and analyzed the samples for

hexavalent chromium and total chromium (results are not included in this report). START also monitored the discharge from Outfall 004 with a water quality meter. START also monitored the Burns Waterway upstream of the release to obtain background readings. Section 2.1 includes additional information on the parameters that were monitored.

On April 15, 2017, U.S. Steel, EPA, and other agencies reconvened on site at 08:00 to continue sampling. U.S. Steel and START collected 86 water samples from Lake Michigan and Burns Waterway. Samples were collected upstream and downstream of Outfall 004, at various locations on Lake Michigan, and along the shoreline of the local beaches. Water samples were submitted for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START also collected 16 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START continued monitoring Outfall 004 with a water quality meter.

On April 16, 2017, U.S. Steel, EPA, and other agencies reconvened at 07:00 to continue sampling. U.S. Steel and START collected 84 water samples from Lake Michigan and Burns Waterway. Samples were collected upstream and downstream of Outfall 004, at various locations on Lake Michigan, and along the shoreline of the local beaches. Water samples were submitted for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START also collected 16 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. START monitored water quality parameters at Outfall 004 both from shore and by small vessel water craft in the Burns Waterway. U.S. Steel continued to phase in its processes, restarting sections of the plant.

On April 17, 2017, U.S. Steel, EPA, and other agencies reconvened at 09:00 to continue sampling. U.S. Steel and START collected 83 water samples from Lake Michigan and Burns Waterway. Samples were collected upstream and downstream of Outfall 004, at various locations on Lake Michigan, and along the shoreline of the local beaches. Water samples were submitted for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and START also collected 16 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. START also monitored water quality parameters at Outfall 004 both from shore and by small vessel water craft. At approximately 10:20, U.S. Steel's "Tin Line" process was restarted and was the first process using chromium to go back online. At approximately 12:00, U.S. Steel's "Chrome Line" process was restarted.

On April 18, 2017, U.S. Steel, EPA, and other agencies reconvened at 09:00 to continue sampling. U.S. Steel and START collected 83 water samples from Lake Michigan and Burns Waterway. Samples were collected upstream and downstream of Outfall 004, at various locations on Lake Michigan, and along the shoreline of the local beaches. Water samples were submitted for laboratory analysis of hexavalent chromium and total chromium. U.S. Steel and EPA also collected 12 sediment samples from the various local beaches within proximity to U.S. Steel for laboratory analysis of hexavalent chromium and total chromium. START monitored water quality parameters at Outfall 004 both from shore and by small vessel water craft. All beaches that were previously closed had opened. Indiana American Water's drinking water intake was opened and processing Lake Michigan water.

Release Characterization

The extent of the release of hexavalent chromium to the environment was determined primarily through sampling and, initially, visual inspection. Sampling efforts focused on determining the extent of contamination in the area immediately surrounding the spill site and the extent of contamination that reached the surface waters of Burns Waterway and Lake Michigan, as well as the nearby beaches.

Daily surface water and sediment sampling was conducted by U.S. Steel contractor ALS Global (ALS) and START to determine the extent of contamination in Burns Waterway, Lake Michigan, and the nearby beaches. Surface water and sediment sampling commenced on April 12, 2017. Twenty four surface water sampling locations in Burns Waterway were selected, with samples collected both at the surface and at depth for each location. Six locations were upstream of the spill site (Appendix A, Figure 3a), and 18 locations were adjacent to or downstream of the release within the Burns Waterway (Appendix A, Figure 3b). Twelve offshore surface water sampling locations in Lake Michigan were selected, with samples collected both at the surface and at depth for each location (Appendix A, Figure 3c). In addition, shallow surface water samples were collected at seven beach locations, four east of the spill and three west of the spill (Appendix A, Figure 3d). Sediment samples were also collected at these seven beach locations (Appendix A, Figure 4). From April 12 to April 18, 2017, samples were collected by ALS and START daily from each sample location. Samples were analyzed for hexavalent chromium and total chromium. During the start-up of the chrome process lines, water quality parameters were measured at the outfall, including water temperature, pH, oxidation-reduction potential (ORP), conductivity, and dissolved oxygen (DO).

1.5 SAMPLE SHIPMENT

After collection, the samples were packaged, and delivered by START to STAT Analysis in Chicago, Illinois, from April 12 through April 13. From April 14 through April 18, samples were packaged, picked up by courier, and delivered to Pace Analytical. Surface water samples for hexavalent chromium analysis were delivered to Pace's laboratory in Grand Rapids, Michigan, and all other samples were delivered to Pace's laboratory in Indianapolis, Indiana. Samples were packaged and shipped in accordance with Tetra Tech standard operating procedure (SOP) No. 019-7 "Packaging and Shipping Samples" (Tetra Tech 2014). Chain-of-custody forms accompanied samples from the site to the laboratory.

1.6 SAMPLE ANALYSIS

From April 12 through April 13, water samples were analyzed by STAT Analysis for hexavalent chromium using EPA Method 7196A and for total chromium using EPA Method 6020. Sediment samples were analyzed by STAT Analysis for hexavalent chromium using EPA Method 7196A. Due to the large number of samples collected each day, START then procured PACE Analytical to analyze samples collected from April 14 through April 18. Pace used EPA Method 7196A to analyze hexavalent chromium in water and sediment samples; EPA Method 200.7 to analyze total chromium in water samples; and EPA Method 6010B to analyze total chromium in sediment samples.

2.0 MONITORING AND SAMPLING RESULTS

2.1 WATER MONITORING

START conducted water monitoring at Outfall 004 from April 14 to April 18, 2017 (Appendix A, Figure

2). Parameters that were monitored included pH, DO, temperature, specific conductivity, and ORP. Of

these parameters, ORP was prioritized because hexavalent chromium will cause ORP to rise. No

significant changes in parameters were observed at Outfall 004 during response monitoring activities. All

water monitoring activity and data was logged in START logbooks, and can be found in Appendix C.

2.2 WATER SAMPLING

START collected 551 water samples, including 42 duplicates, with ALS from April 12 through 18 during

the response. Samples were collected from the surface, and from the midpoint between the water

surface and the bottom depth of the waterway. Surface samples were collected directly from the water

surface using 250 mL poly bottles. Samples that were collected at depth used a low flow peristaltic pump

and were collected in 250 mL poly bottles. The following sections summarize surface water sample

results based on the locations where samples were collected – at Outfall 004; from Burns Waterway

upstream of the outfall; from Burns Waterway downstream of the outfall; from offshore areas within Lake

Michigan; and from beaches east and west of the spill area.

Data summary tables with individual sample results are provided in Appendix B. Site figures showing

sampling locations can be found in Appendix A. The data validation reports for surface water samples

can be found in Attachment 1.

U.S. Steel Hexavalent Chromium Spill ER Final Letter Report

November 2017

Letter Report TDD No.: S05-0001-1704-201

Tetra Tech, Inc.

9

Outfall 004

The initial sample collected at Outfall 004 on April 11, 2017, during the response had a hexavalent chromium concentration of 990 micrograms per liter (µg/L). Concentrations in Burns Waterway near the outfall decreased significantly by April 12. Low level detections of hexavalent chromium were found in the surface samples collected on April 12 and April 14. Low level detections of hexavalent chromium were found in deep samples collected on April 12, April 14, and April 15. All detections were below ATSDR screening level of 6 µg/L. From April 16 through April 18, both surface and deep sample results for hexavalent chromium were non-detect. A total of 42 samples were collected adjacent to Outfall 004, with 8 detections for hexavalent chromium occurring between April 12 and April 15. Detections of total chromium for surface and deep samples were below the Maximum Contaminant Level (MCL) of 100 µg/L. A summary of the range of results for the samples collected at Outfall 004 on the Burns Waterway from April 12 through April 18 is found in the table below. Results of individual samples are included in Appendix B (Table 2), and sample locations (C001 through C003) are shown on Figure 3b in Appendix A.

	BURNS WATERWAY – OUTFALL 004					
	SURFACE SA	MPLES	DEEP SAMPLES			
	Hexavalent Chromium	Total Chromium	Hexavalent Chromium	Total Chromium		
11-Apr	990	NA	NA	NA		
12-Apr	ND to 2.6 J-	1.7 J to 26	ND to 2.6 J-	1.7 J to 28		
13-Apr	ND	1.4 J to 1.8 J	ND	1.4 J to 2.0		
14-Apr	ND to 2.6 J-	ND to 2.6 J- 1.4 J to 4.3 J ND to 0.4 J-		1.8 J to 5.7 J		
15-Apr	ND	1.9 J	ND to 0.5 J	1.4 J to 2.4 J		
16-Apr	ND	ND	ND	ND		
17-Apr	ND	1.4 J to 2.2 J	ND	1.5 J to 2.2 J		
18-Apr	ND	1.7 J to 3.7 J	ND	1.9 J to 3.3 J		

Notes: All results are in µg/L.

ND = Not detected

NA = Not analyzed

J = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

Burns Waterway - Upstream of Outfall 004

Samples were collected in Burns Waterway upstream of Outfall 004 to provide an estimate of background concentrations of hexavalent and total chromium in surface water. Low level detections of hexavalent chromium were found in the surface water samples collected on April 12, April 13, April 15, and April 17, and in deep samples collected on April 12. Concentrations were similar to those observed at Outfall 004 from April 12 through April 15. A total of 84 samples were collected upstream of Outfall 004, with 11 detections of hexavalent chromium occurring between April 12 and April 17. All detections were below ATSDR screening level of 6 µg/L. Detections of total chromium for surface and deep samples were below the MCL of 100 µg/L. A summary of the range of results for the samples collected upstream of Outfall 004 on the Burns Waterway from April 12 through April 18 is found in the table below. Results of individual samples are included in Appendix B (Table 2), and sample locations (A001 through B003) can be found on Figure 3a in Appendix A.

	BURNS WATERWAY – UPSTREAM OF OUTFALL 004				
	SURFACE SA	MPLES	DEEP SAMPLES		
	Hexavalent Chromium Total Chromium		Hexavalent Chromium	Total Chromium	
12-Apr	ND to 4.5 J-	1.8 J to 2.1	ND to 3.1 J-	1.7 J to 2.0	
13-Apr	ND to 2.2 J-	1.4 J to 1.8 J	ND	1.3 J to 1.6 J	
14-Apr	ND	1.2 J to 1.9 J	ND	1.1 J to 1.8 J	
15-Apr	ND to 0.5 J 1.5 J to 2.3 J		ND	1.4 J to 6.4 J	
16-Apr	ND	ND to 2.0 J	ND	ND	
17-Apr	ND to 0.4 J	0.91 J to 2.1 J	ND	1.2 J to 2.2 J	
18-Apr	ND	1.8 J to 2.2 J	ND	1.8 J to 2.8 J	

Notes: All results are in µg/L.

ND = Not detected

J = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

Burns Waterway - Downstream of Outfall 004

Samples were collected downstream of Outfall 004 to determine the possible extent of contamination within Burns Waterway before it discharges to Lake Michigan. Low level detections of hexavalent chromium were found in the surface and deep water samples on April 12 and April 13, and concentrations were below ATSDR screening levels. On April 14, hexavalent chromium concentrations for one surface sample (15.5 µg/L) and one deep sample (21.5 µg/L) exceeded the ATSDR screening level. These were the only two samples collected after the initial release that had hexavalent chromium concentrations higher than 6 µg/L. A total of 210 samples were collected downstream of Outfall 004 on the Burns Waterway, with 16 detections for hexavalent chromium occurring between April 12 and April 14. No detections of hexavalent chromium occurred from April 15 through April 18. Detections of total chromium for surface and deep samples were below the MCL of 100 µg/L. A summary of the range of results for the samples collected upstream of Outfall 004 on the Burns Waterway from April 12 through April 18 is found in the table below. Results of individual samples are included in Appendix B (Table 2), and sample locations (D001 through H003) can be found on Figure 3b in Appendix A.

	BURNS \	WATERWAY – DOWN	NSTREAM OF OUTFA	ALL 004		
	SURFACE	SAMPLES	DEEP SAMPLES			
	Hexavalent Chromium	Total Chromium	Hexavalent Chromium	Total Chromium		
12-Apr	ND to 2.4 J-	2 to 9.7	ND to 3.6 J-	1.5 to 15		
13-Apr	ND to 3.0 J-	1.3 J to 6.9	ND to 2.2 J-	1.6 J to 14		
14-Apr	0.4 J- to 15.5 J- 0.6 J to 2.7 J		ND to 21.5 J-	0.78 J to 2.3 J		
15-Apr	ND 1.6 J to 8.6 J		ND	1.5 J to 10.3		
16-Apr	ND ND to 4.2 J		ND	ND to 3.7 J		
17-Apr	ND ND to 1.7 J		ND	ND to 1.2 J		
18-Apr	ND	1.3 J to 3.4 J	ND	1.9 J to 3.7 J		

Notes: All results are in µg/L.

ND = Not detected

J = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

Lake Michigan

Samples were collected in Lake Michigan to evaluate the extent of possible contamination. A total of 138 samples were in collected in Lake Michigan, with 13 detections of hexavalent chromium occurring between April 12 and April 18 in surface and deep water samples. All detections were below ATSDR screening level of $6 \mu g/L$, and concentrations were similar to those found in background samples collected in Burns Waterway upstream of the release. Detections of total chromium for surface and deep water samples were below the MCL of $100 \mu g/L$. A summary of the results for the samples collected in Lake Michigan from April 12 through April 18 is found in the table below. Results of individual samples are included in Appendix B (Table 2), and sample locations (SW-002 through SW-012) can be found on Figure 3c in Appendix A.

	LAKE MICHIGAN					
_	SURFACE	SAMPLES	DEEP	SAMPLES		
	Hexavalent Chromium Total Chromium		Hexavalent Chromium	Total Chromium		
12-Apr	ND to 2.6 J	2.1 J to 4.9	ND to 2.9 J	1.4 J to 5.5		
13-Apr	ND to 2.2 J	1.5 J to 2.0 J	ND	1.6 J to 1.9 J		
14-Apr	ND to 0.6 J-	ND to 1.6 J	ND	ND to 2.0 J		
15-Apr	ND ND to 2.2 J		ND to 0.3 J	0.67 J to 1.9 J		
16-Apr	ND ND to 1.6 J		ND	0.78 J to 10 J		
17-Apr	ND ND to 0.84 J		ND	ND to 1.0 J		
18-Apr	ND to 0.9 J	0.85 J to 2.6 J	ND to 0.6 J	0.86 J to 2.3 J		

Notes: All results are in μ g/L.

ND = Not detected

J = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

Local Beaches

Surface water samples were collected at nearby beaches were taken to evaluate the extent of possible hexavalent chromium contamination and ensure no contamination reached public areas. A total of 40 samples were collected at the surface at the local beaches, with 1 detection for hexavalent chromium occurring on April 14. The detection was below ATSDR screening level of 6 µg/L. Beach samples were not analyzed for total chromium. A summary of the results for the samples collected from nearby local beaches from April 12 through April 18 is found in the table below. Results of individual samples are included in Appendix B (Table 2), and sample locations are shown on Figure 3d in Appendix A.

	LOCAL BEACHES			
	Hexavalent Chromium	Total Chromium		
12-Apr	NA	NA		
13-Apr	ND	NA		
14-Apr	ND to 5.9 J-	NA		
15-Apr	ND	NA		
16-Apr	ND	NA		
17-Apr	ND	NA		
18-Apr	ND	NA		

Note: All results are in µg/L.

ND = Not detected NA = Not analyzed

J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

2.3 SEDIMENT SAMPLING

START and ALS collected 114 sediment samples, including 13 duplicates, during the response from April 12 through 18. The samples were collected at seven nearby beaches. At each beach, one sample was collected on the beach and a second sample was collected within the wake zone. Sample locations are shown on Figure 4 in Appendix A. These samples were collected using disposable scoops to transfer sediment into 4 ounce jars. Sediment sample results are included in Table 3 in Appendix B. The data validation reports can be found in Attachment 1.

Results for hexavalent chromium were compared to the EPA Removal Management Level (RML), which is 30 milligrams per kilogram (mg/kg) (EPA 2016). Hexavalent chromium was detected in only one sample collected from Dunbar Beach on April 16. The concentration (7.3 mg/kg) was below the RML. EPA does not have an RML for total chromium, so results were compared to the EPA Region 5 Ecological Screening Value for total chromium, which is 43.4 mg/kg (EPA 2003). Total chromium had low level detections from April 14 through April 18, but all concentrations were below the EPA Ecological Screening Value. A summary of the results for the samples collected from nearby local beaches from April 12 through April 18 is found in the table below.

	Beach Samples			
	Hexavalent Chromium Total Chromi			
12-Apr	ND	NA		
13-Apr	ND	NA		
14-Apr	ND	1.5 to 6.7		
15-Apr	ND	1.4 to 5.9		
16-Apr	ND to 7.3 J-	1.4 to 6.6		
17-Apr	ND	1.3 to 8.7		
18-Apr ND		1.3 to 9.2 J		

Note: All results are in mg/kg.

ND = Not detected NA = Not analyzed

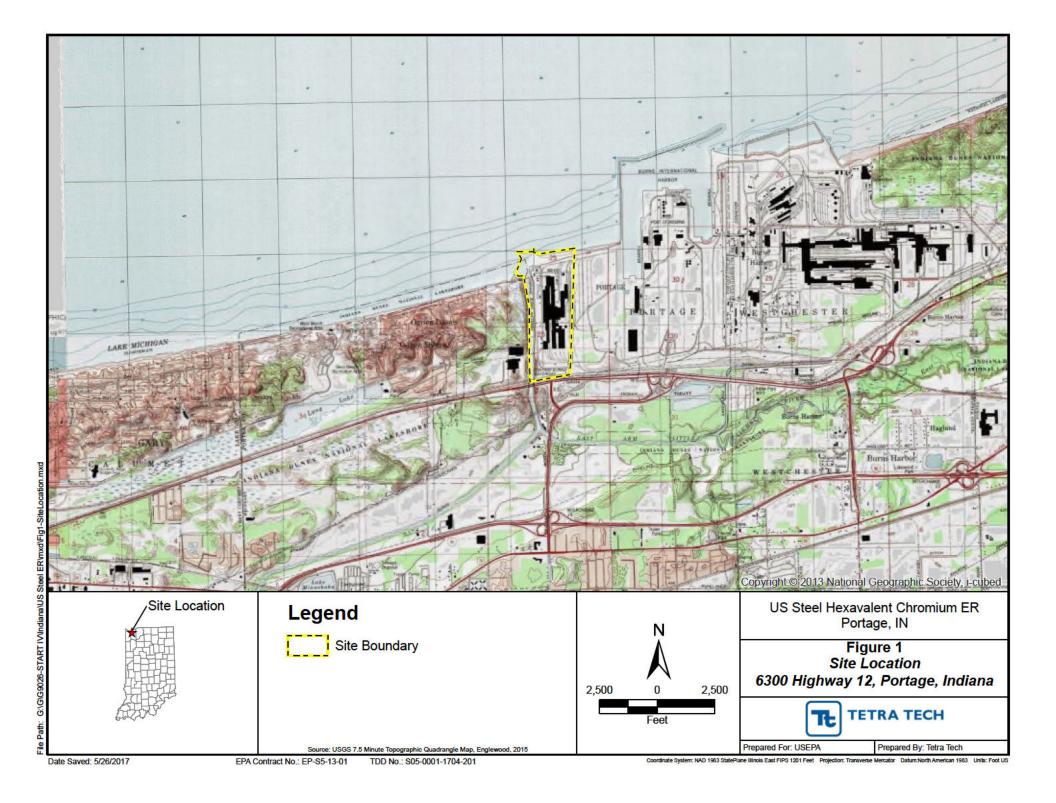
J- = The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

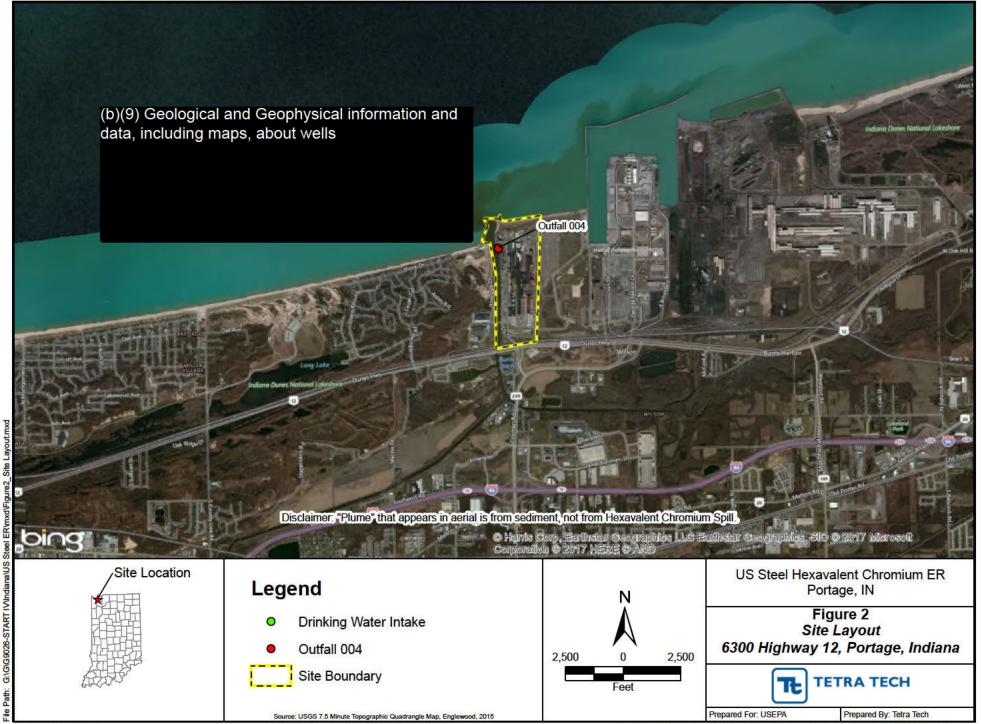
3.0 EFFECTIVENESS OF RESPONSE ACTIVITIES

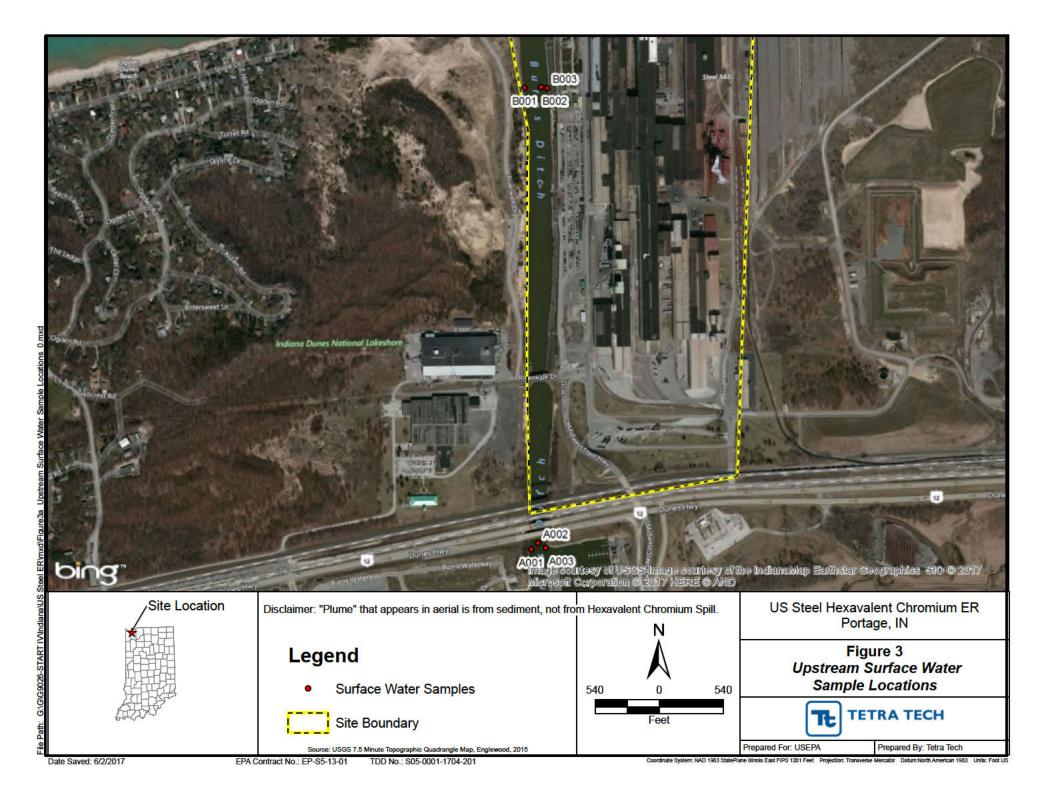
U.S. Steel was identified as a potentially responsible party for the release of hexavalent chromium resulting from failed process line. Concentrations of hexavalent chromium decreased rapidly from the initial level of 990 μg/L measured on April 11 after the spill occurred. Hexavalent chromium results for surface water samples collected from April 12 through 18 were mostly non-detect or below the ATSDR screening value of 6 μg/L. Only two samples exceeded the screening level – both collected from Burns Waterway on April 14, downstream of the release point. Surface water total chromium results were below the MCL of 100 μg/L. Hexavalent chromium was detected in only one sediment sample at a concentration below the EPA RML of 30 mg/kg. All other samples were non-detect for hexavalent chromium. All sediment sample results for total chromium were below the EPA Region 5 Ecological Screening Level.

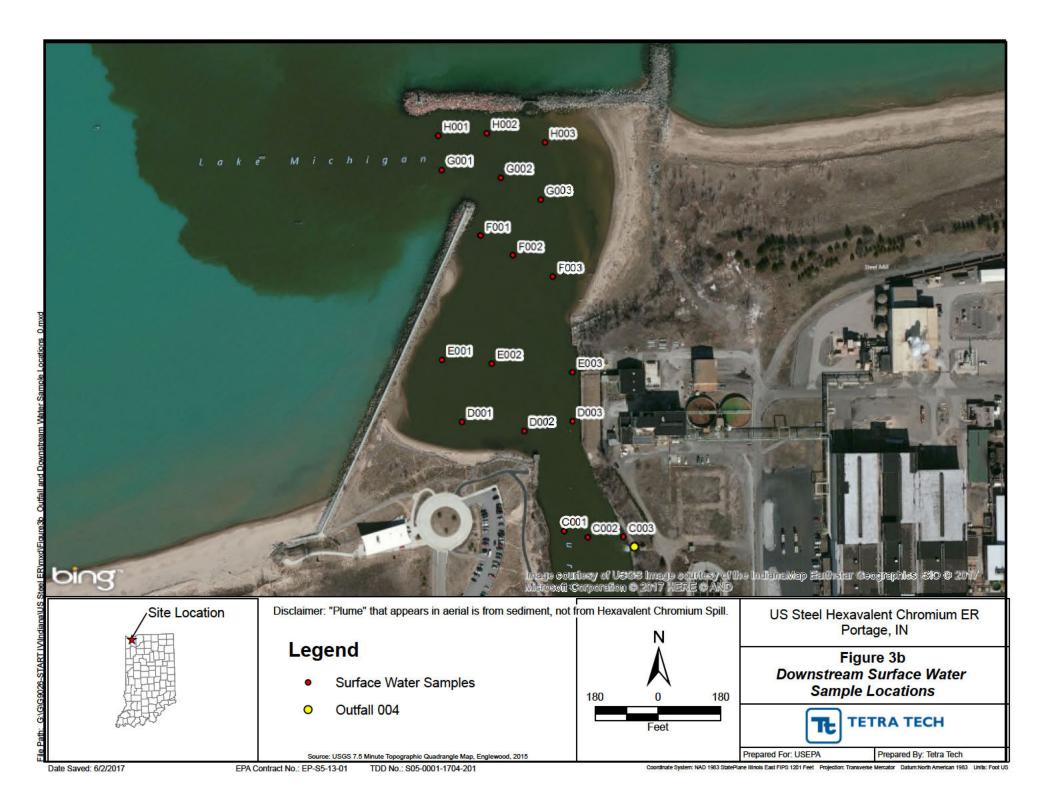
Using this data, EPA determined the threat to be mitigated on April 18. U.S. Steel implemented a long-term monitoring plan from April 19 to September 4, 2017, which required collection of surface water samples once per week. Samples were collected at the local beaches, and were collocated with the weekly bacteria sampling performed by National Park Services (NPS). Samples were analyzed for hexavalent chromium and total chromium, and U.S. Steel submitted weekly reports of sample results to U.S. EPA, Indiana American Water, NPS, and IDEM. Hexavalent chromium was not detected in any of the samples collected during the monitoring program. The long-term monitoring period has ended, and U.S. Steel will continue to monitor its discharge from Outfall 004 and submit monthly discharge reports to IDEM.

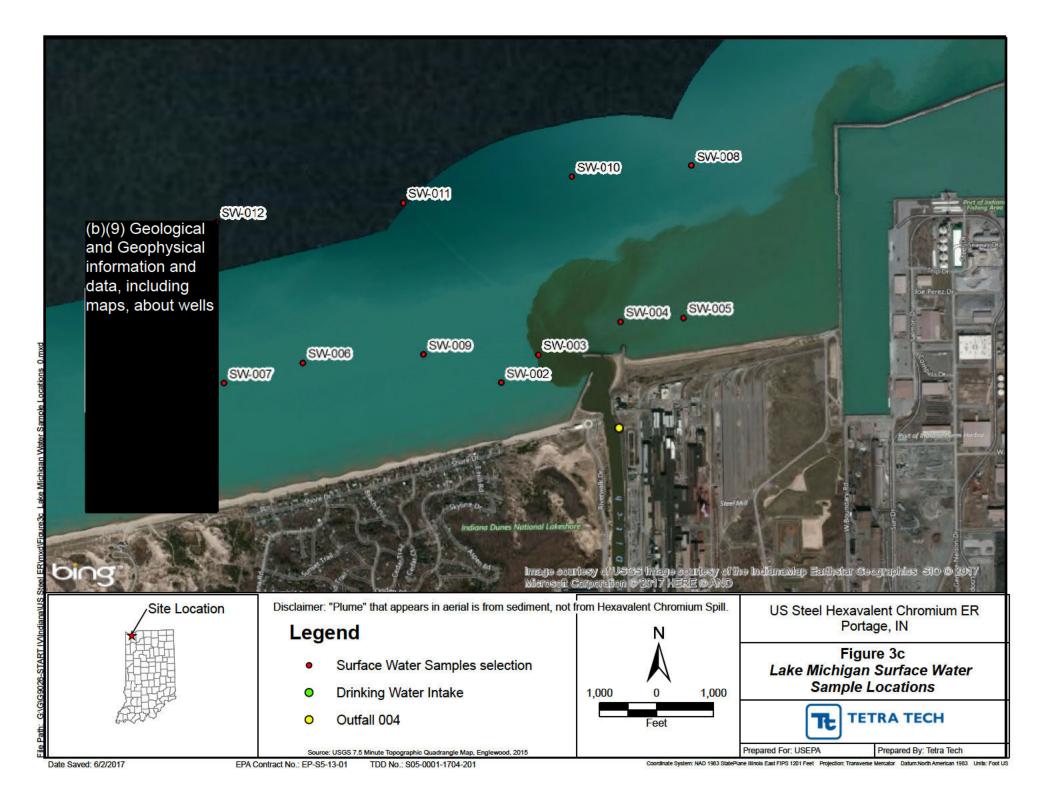
Tetra Tech, Inc.

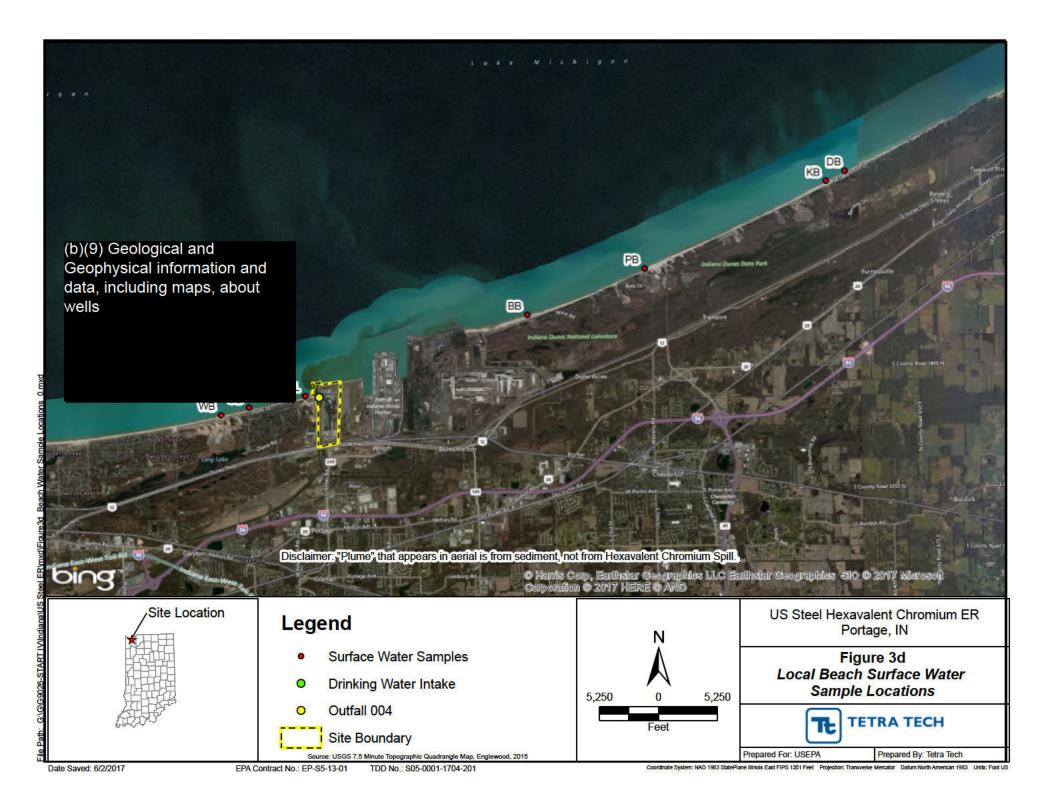

4.0 REFERENCES

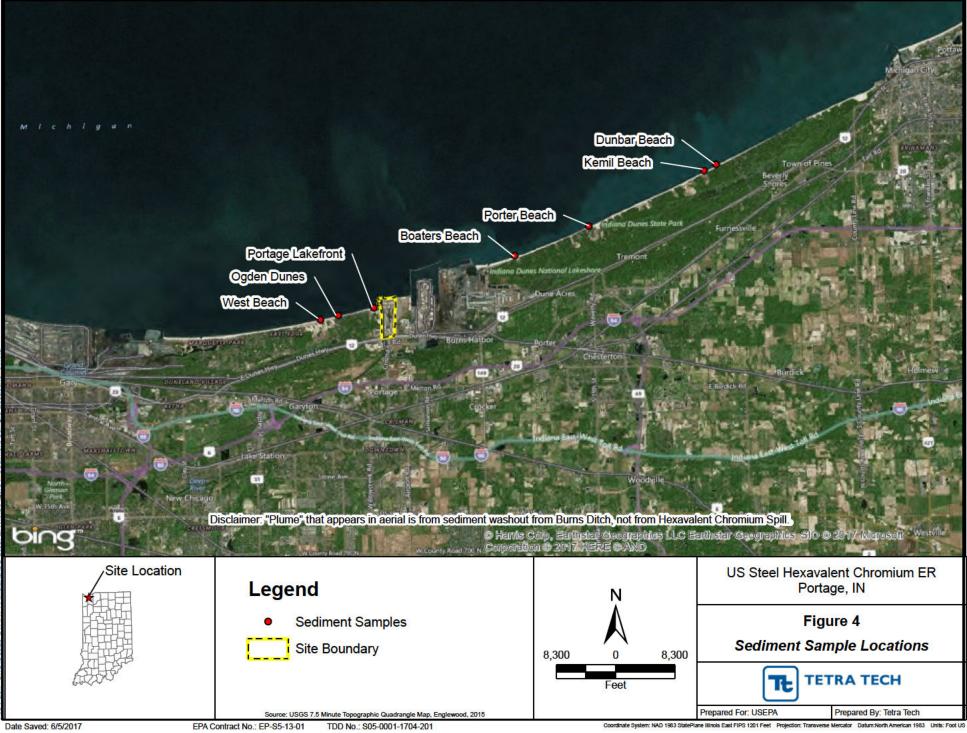

Tetra Tech. 2014. Packaging and Shipping Samples, SOP No. 019-7. November.


U.S. Environmental Protection Agency (EPA). 2003. Ecological Screening Levels. EPA Region 5. August 22.


EPA. 2016. Regional Removal Management Levels for Chemicals (RMLs). https://www.epa.gov/risk/regional-removal-management-levels-chemicals-rmls. May.


APPENDIX A FIGURES





APPENDIX B SUMMARY TABLES

Sample ID	Matrix	Lab	Date	Sample Collector	Analysis
USS-DW-Wetwell-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-BB01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-BB02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-DB01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-DB02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total
USS-SS-KB01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total
USS-SS-KB02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-OD01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-OD02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-PB01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-PB02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-PL01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-PL02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-WB01-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SS-WB02-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-002-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-002-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-003-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-003-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-004-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-004-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-A001-B-041217	Drinking Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-A002-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-A002-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium

T		_			
USS-SW-A003-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-A003-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B001-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B001-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B003-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-B003-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C001-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C001-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C002-A-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041217	Sediment	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C003-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-C003-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041217	Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium

1				
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/12/2017	START	Chromium, Total Chromium
Surface Water		4/12/2017	START	Chromium, Total Chromium
Surface Water		4/12/2017	START	Chromium, Total Chromium
Surface Water			START	Chromium, Total Chromium
	j		START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
	j		START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
	Surface Water Surface Water Surface Water Surface Water	Surface Water STAT Analysis Surface Water STAT Analysis	Surface Water STAT Analysis 4/12/2017 Surface Water STAT Analysis 4/13/2017	Surface Water STAT Analysis 4/12/2017 START Surface Water STAT Analysis 4/12/2017 START

	1			
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water		4/13/2017	START	Chromium, Total Chromium
Surface Water		4/13/2017	START	Chromium, Total Chromium
Surface Water		4/13/2017	START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
	Surface Water Surface Water Surface Water Surface Water	Surface Water STAT Analysis Sediment STAT Analysis	Surface Water STAT Analysis 4/13/2017 Sediment STAT Analysis 4/13/2017 Sediment STAT Analysis 4/13/2017 Sediment STAT Analysis 4/13/2017 <tr< td=""><td>Surface Water STAT Analysis 4/13/2017 START Surface Water STAT Analysis 4/13/2017 START Sediment STAT Analysis 4/13/2017 START</td></tr<>	Surface Water STAT Analysis 4/13/2017 START Sediment STAT Analysis 4/13/2017 START

		1		1
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Sediment		4/13/2017	START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
Sediment			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
	Sediment Sediment Sediment	Sediment STAT Analysis Surface Water STAT Analysis	Sediment STAT Analysis 4/13/2017 Surface Water STAT Analysis 4/13/2017	SedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSedimentSTAT Analysis4/13/2017STARTSurface WaterSTAT Analysis

				1
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
Surface Water		4/13/2017	START	Chromium, Total Chromium
Surface Water			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
			START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
	j			Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
	Surface Water Surface Water Surface Water Surface Water Surface Water	Surface Water STAT Analysis Surface Water STAT Analysis	Surface Water STAT Analysis 4/13/2017 Surface Water STAT Analysis 4/13/2017	Surface WaterSTAT Analysis4/13/2017STARTSurface WaterSTAT Analysis4/13/2017START

I	_	1	1		
USS-SW-G003-B-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H001-A-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H001-B-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H002-B-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H003-A-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-H003-B-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-INTAKE-A-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-INTAKE-A-041317-D	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-INTAKE-B-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-KB02-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-OD02-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-PB02-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-PL02-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SW-WB02-041317	Surface Water	STAT Analysis	4/13/2017	START	Chromium, Total Chromium
USS-SS-BB01-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-BB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-DB01-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
		·			Chromium, Total
		j			Chromium, Total
		·			Chromium, Total
		·			Chromium, Total
		j			Chromium, Total
		-			Chromium, Total
		·			Chromium, Total
USS-SS-DB02-041417 USS-SS-KB01-041417 USS-SS-KB02-041417 USS-SS-OD01-041417 USS-SS-OD02-041417 USS-SS-PB01-041417	Surface Water	Pace Analytical	4/14/2017 4/14/2017 4/14/2017 4/14/2017 4/14/2017 4/14/2017	START START START START START START START	Chromium, Total Chromium Chromium Chromium Chromium

		1	1		
USS-SS-PL01-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-PL01-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-PL02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-PL02-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-WB01-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-WB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-002A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-002B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-003A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-003B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-004A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-004B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-004B-041417-D	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-005A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-005B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-006A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-006B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-007-A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-007-B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-008-A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-008-B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-009-A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-009-B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-010-A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-010-A-041417-D	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium

		1	1		
USS-SW-010-B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-011-A-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-011-B-041417	Sediment	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-012-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-012-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-A003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-B003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-BB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-C003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium

			1		1
USS-SW-C003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-DB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-E003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-F003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-G001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-G001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-G002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium

					_
USS-SW-G002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-G003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-G003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H001-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H001-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H002-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H003-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-H003-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-Intake-A-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-Intake-B-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-KB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-OD02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-PB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-PL02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-WB02-041417	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SW-WB02-041417-D	Surface Water	Pace Analytical	4/14/2017	START	Chromium, Total Chromium
USS-SS-BB01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-BB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-DB01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-DB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-KB01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-KB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-OD01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium

T		1			
USS-SS-OD01-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-OD02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-PB01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-PB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-PB02-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-PL01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-PL02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-WB01-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-WB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-004-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-004A-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-004-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-005-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-005-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-006-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-006-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-007-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-007-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-008-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-008-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-008B-041517-D	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium

T		1			
USS-SW-009-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-009-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-010-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-010-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-011-A-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-011-B-041517	Sediment	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-012-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-012A-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-012-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-A003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-B003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-BB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium

					_
USS-SW-C001-B-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-C003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-DB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-DB02-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041517-D	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-E003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-F001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-F002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-F002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium

		1	T T		
USS-SW-F003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-F003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-G003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H001-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H001-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H002-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H003-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-H003-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-Intake-A-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-Intake-B-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-KB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-OD02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-PB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-PL02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SW-WB02-041517	Surface Water	Pace Analytical	4/15/2017	START	Chromium, Total Chromium
USS-SS-BB01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-BB01-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-BB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-DB01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium

		T	1		1
USS-SS-DB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-KB01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-KB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-OD01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-OD02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-PB01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-PB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-PL01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-PL02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-WB01-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-WB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-WB02-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-002-A-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-004-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-004-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-005-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-005-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-005B-041617-D	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-006-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-006-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-007-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium

T		1	1		
USS-SW-007-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-008-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-008-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-009-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-009-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-010-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-010-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-011-A-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-011-B-041617	Sediment	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-012-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-012-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-A003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-B003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-BB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium

T		_	T T		
USS-SW-C001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-C001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-C002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-C003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-C003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-DB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-E003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-F001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-F002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-F002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-F003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium

		1	1		
USS-SW-F003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-G003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H001-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H001-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H002-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H003-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-H003-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-Intake-A-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-Intake-B-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-KB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-OD02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-PB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-PB02-041617-D	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-PL02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SW-WB02-041617	Surface Water	Pace Analytical	4/16/2017	START	Chromium, Total Chromium
USS-SS-BB01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-BB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-DB01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-DB01-041717-D	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium

	1	T	1		
USS-SS-DB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-KB01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-KB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-OD01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-OD02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-PB01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-PB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-PB02-041717-D	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-PL01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-PL02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-WB01-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SS-WB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-002A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-002B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-003A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-003A-041717-D	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-003B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-004A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-004B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-005A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-005B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-006A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-006B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-007-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-007-B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium

T		1			
USS-SW-008-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-008-B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-009-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-009-B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-010-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-010-B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-011-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-011-B-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-012-A-041717	Sediment	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-012-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-A003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-B003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-BB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-C001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-C001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium

		T	1		
USS-SW-C002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-C002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-C003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-C003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-DB02-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-E003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F002-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F002-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F003-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-F003-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-G001-A-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
USS-SW-G001-B-041717	Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium

	1	Т Т		
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	·	4/17/2017	START	Chromium, Total Chromium
Surface Water		4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/17/2017	START	Chromium, Total Chromium
Surface Water		4/17/2017	START	Chromium, Total Chromium
Surface Water	·	4/17/2017	START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
			START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
				Chromium, Total Chromium
				Chromium, Total Chromium
Surface Water	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	Surface Water Surface Water	Surface Water Pace Analytical	Surface Water Pace Analytical 4/17/2017 Surface Water Pace Analytical 4/18/2017 Surface Water Pace Analytical 4/18/2017	Surface Water Pace Analytical 4/17/2017 START Surface Water Pace Analytical 4/18/2017 START

		1	1		
USS-SS-PB02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-PB02-041817-D	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-PL01-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-PL02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-WB01-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-WB01-041817-D	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SS-WB02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-002A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-002B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-003A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-003-A-041817-D	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-003B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-004A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-004B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-005A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-005B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-006A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-006B-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-007-A-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-007-B-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-008-A-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-008-B-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-009-A-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-009-B-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-010-A-041817	Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium

1	1	1		
Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Sediment	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
Surface Water	·	4/18/2017	START	Chromium, Total Chromium
Surface Water	·		START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
			START	Chromium, Total Chromium
			START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·			Chromium, Total Chromium
				Chromium, Total Chromium
	·			Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·		START	Chromium, Total Chromium
	·			Chromium, Total Chromium
				Chromium, Total Chromium
	·			Chromium, Total Chromium
				Chromium, Total Chromium
	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	·			Chromium, Total Chromium
	Sediment Sediment Sediment Surface Water	Sediment Pace Analytical Sediment Pace Analytical Sediment Pace Analytical Surface Water Pace Analytical	Sediment Pace Analytical 4/18/2017 Sediment Pace Analytical 4/18/2017 Sediment Pace Analytical 4/18/2017 Surface Water Pace Analytical 4/18/2017	Sediment Pace Analytical 4/18/2017 START Sediment Pace Analytical 4/18/2017 START Sediment Pace Analytical 4/18/2017 START Surface Water Pace Analytical 4/18/2017 START

			T T		1
USS-SW-C003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D001-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D001-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D002-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D002-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D003-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-D003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E001-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E001-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E002-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E002-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E003-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-E003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F001-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F001-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F002-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F002-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F003-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-F003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G001-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G001-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G002-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G002-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G003-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-G003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium

USS-SW-H001-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-H001-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-H002-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-H002-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-H003-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-H003-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-Intake-A-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-Intake-A-041817-D	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-Intake-B-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-OD02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-PB02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-PL02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-PL02-041817-D	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium
USS-SW-WB02-041817	Surface Water	Pace Analytical	4/18/2017	START	Chromium, Total Chromium

		ATSDR									
Analyte	MCL	Screening									
Analyte		Level	USS-SW-002-A-041217	USS-SW-002-A-041317	USS-SW-002-A-041317-D	USS-SW-002-A-041417	USS-SW-002-A-041517	USS-SW-002-A-041617	USS-SW-002-A-041617-D	USS-SW-002-A-041717	USS-SW-002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	μg/L NC	μg/L 6	μg/L 2.6 J	μg/L 2.2 J	μg/L NA	μg/L 1 UJ	μg/L 1 U	μg/L 1 U	μg/L 1 U	μg/L 1 U	μg/L 1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening								
Analyte		Level	USS-SW-002-B-041217	USS-SW-002-B-041317	USS-SW-002-B-041317-D	USS-SW-002-B-041417	USS-SW-002-B-041517	USS-SW-002-B-041617	USS-SW-002-B-041717	USS-SW-002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.6 J	10 U	10 U	1 UJ	0.3 J	1 U	1 U	1 U
Chromium	100	-	4.9	1.7 J	1.8 J	1.6 J	1.2 J	1.2 J	0.66 J	0.86 J

- Notes

 NA Not Analyzed

 NC No Criteria

 mg/kg Miligrams per kilogram

 mg/kg Miligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR									
Analyte	MCL	Screening Level	USS-SW-003-A-041217	USS-SW-003-A-041317	USS-SW-003-A-041417	USS-SW-003-A-041517	USS-SW-003-A-041617	USS-SW-003-A-041717	USS-SW-003-A-041717-D	USS-SW-003-A-041817	USS-SW-003-A-041817-D
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.5 J	10 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U
						1.8 J	1511	10 U			

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening								
Analyte		Level	USS-SW-003-B-041217	USS-SW-003-B-041317	USS-SW-003-B-041317-D	USS-SW-003-B-041417	USS-SW-003-B-041517	USS-SW-003-B-041617	USS-SW-003-B-041717	USS-SW-003-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.9 J	10 U	NA	1 UJ	1 U	1 U	1 U	1 U
Chromium	100	-	5.5	1.8 J	1.6 J	1.6 J	0.96 J	10 J	10 U	1.8 J

- Notes

 NA Not Analyzed

 NC No Criteria

 mg/kg Miligrams per kilogram

 mg/kg Miligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening								
- many te		Level	USS-SW-004-A-041217	USS-SW-004-A-041317	USS-SW-004-A-041417	USS-SW-004-A-041517	USS-SW-004A-041517-D	USS-SW-004-A-041617	USS-SW-004-A-041717	USS-SW-004-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
HlCh'	NC	,	10 U	10 U	1.111	1.11	1.17	1 11	1 11	1.17
Hexavalent Chromium	NC	0	10 U	10 U	I UJ	10	1 U	1 U	10	10

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR									
	MCL	Screening									
Analyte		Level	USS-SW-004-B-041217	USS-SW-004-B-041317	USS-SW-004-B-041317-D	USS-SW-004-B-041417	USS-SW-004-B-041417-D	USS-SW-004-B-041517	USS-SW-004-B-041617	USS-SW-004-B-041717	USS-SW-004-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.1 J	10 U	10 U	1 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria

 mg/kg Miligrams per kilogram

 mg/kg Miligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

		ATSDR						
Analyte	MCL	Screening Level	USS-SW-005-A-041317	USS-SW-005-A-041417	USS-SW-005-A-041517	USS-SW-005-A-041617	USS-SW-005-A-041717	USS-SW-005-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 U	0.4 J-	1 U	1 U	1 U	1 U
Chromium	100		1.5 J	0.84 J	1.7 J	0.98 J	0.84 J	2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening								
Analyte		Level	USS-SW-005-B-041317	USS-SW-005-B-041317-D	USS-SW-005-B-041417	USS-SW-005-B-041517	USS-SW-005-B-041617	USS-SW-005B-041617-D	USS-SW-005-B-041717	USS-SW-005-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 U	NA	1 UJ	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria

 mg/kg Miligrams per kilogram

 mg/kg Miligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-006-A-041417	USS-SW-006-A-041517	USS-SW-006-A-041617	USS-SW-006-A-041717	USS-SW-006-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U
Chromium	100	-	1.5 J	0.82 J	1.5 J	10 U	0.85 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-006-B-041417	USS-SW-006-B-041517	USS-SW-006-B-041617	USS-SW-006-B-041717	USS-SW-006-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	0.6 J
Chromium	100	-	1.2 J	1.9 J	1 J	0.76 J	2.3 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-007-A-041417	USS-SW-007-A-041517	USS-SW-007-A-041617	USS-SW-007-A-041717	USS-SW-007-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	0.9 J
Chromium	100	-	1.4 J	1.4 J	1.6 J	0.6 J	0.9 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-007-B-041417	USS-SW-007-B-041517	USS-SW-007-B-041617	USS-SW-007-B-041717	USS-SW-007-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U
Chromium	100		1.4 J	1.2 J	1.1 J	1 J	1.2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-008-A-041417	USS-SW-008-A-041517	USS-SW-008-A-041617	USS-SW-008-A-041717	USS-SW-008-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U
Chromium	100		1.4 J	10 U	1.2 J	0.74 J	1.5 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-008-B-041417	USS-SW-008-B-041517	USS-SW-008B-041517-D	USS-SW-008-B-041617	USS-SW-008-B-041717	USS-SW-008-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U	1 U
Chromium	100	-	1.2 J	1.9 J	NA	1.9 J	0.92 J	1.8 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-009-A-041417	USS-SW-009-A-041517	USS-SW-009-A-041617	USS-SW-009-A-041717	USS-SW-009-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U
Chromium	100		10 U	1.9 J	0.96 J	10 U	1.4 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-009-B-041417	USS-SW-009-B-041517	USS-SW-009-B-041617	USS-SW-009-B-041717	USS-SW-009-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	0.3 J	1 U	1 U	1 U
Chromium	100	-	1.3 J	1.1 J	1.8 J	0.87 J	1.3 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR						
Analyte	MCL	Screening						
Analyte		Level	USS-SW-010-A-041417	USS-SW-010-A-041417-D	USS-SW-010-A-041517	USS-SW-010-A-041617	USS-SW-010-A-041717	USS-SW-010-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 UJ	1 U	1 U	1 U	1 U
Chromium	100	-	0.86 J	0.98 J	1.7 J	1.6 J	10 U	1 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-010-B-041417	USS-SW-010-B-041517	USS-SW-010-B-041617	USS-SW-010-B-041717	USS-SW-010-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 UJ	1 U	1 U
Chromium	100	-	0.94 J	1.2 J	1.7 J	10 U	1.2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-011-A-041417	USS-SW-011-A-041517	USS-SW-011-A-041617	USS-SW-011-A-041717	USS-SW-011-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.6 J-	1 U	1 UJ	1 U	1 U
Chromium	100		0.69 J	1.5 J	1.5 J	10 U	2.2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-011-B-041417	USS-SW-011-B-041517	USS-SW-011-B-041617	USS-SW-011-B-041717	USS-SW-011-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	0.6 J
Chromium	100		1.2 J	1.2 J	1.2 J	0.49 J	1.3 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR						
Analyte	MCL	Screening Level	USS-SW-012-A-041417	USS-SW-012-A-041517	USS-SW-012A-041517-D	USS-SW-012-A-041617	USS-SW-012-A-041717	USS-SW-012-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U	1 U
Chromium	100	-	0.99 J	1.3 J	NA	1.1 J	10 U	1.7 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-012-B-041417	USS-SW-012-B-041517	USS-SW-012-B-041617	USS-SW-012-B-041717	USS-SW-012-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	1 UJ	1 U	1 U	1 U	1 U
Chromium	100		1.5 J	0.97 J	1.1 J	10 U	1.8 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening								
Analyte		Level	USS-SW-A001-A-041217	USS-SW-A001-A-041317	USS-SW-A001-A-041417	USS-SW-A001-A-041417-D	USS-SW-A001-A-041517	USS-SW-A001-A-041617	USS-SW-A001-A-041717	USS-SW-A001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	2.2 J-	1 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-A001-B-041217	USS-SW-A001-B-041317	USS-SW-A001-B-041417	USS-SW-A001-B-041517	USS-SW-A001-B-041617	USS-SW-A001-B-041717	USS-SW-A001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 J-	1 UJ	1 U	1 U	1 U	1 U
Chromium	100						10 U		

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MOT	ATSDR							
Analyte	MCL	Screening Level	USS-SW-A002-A-041217	USS-SW-A002-A-041317	USS-SW-A002-A-041417	USS-SW-A002-A-041517	USS-SW-A002-A-041617	USS-SW-A002-A-041717	USS-SW-A002-A-041817
	ug/L	ug/L	ug/L	пеД.	μg/L	ug/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	0.5 J	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-A002-B-041217	USS-SW-A002-B-041317	USS-SW-A002-B-041417	USS-SW-A002-B-041517	USS-SW-A002-B-041617	USS-SW-A002-B-041717	USS-SW-A002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.4 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyta	MCL	ATSDR Screening								
Analyte		Level	USS-SW-A003-A-041217	USS-SW-A003-A-041317	USS-SW-A003-A-041317-D	USS-SW-A003-A-041417	USS-SW-A003-A-041517	USS-SW-A003-A-041617	USS-SW-A003-A-041717	USS-SW-A003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.4 J-	10 UJ	2 J-	1 UJ	1 U	1 U	0.4 J	1 U
Chromium	100		19 I	1 4 I	NΔ	131	181	10.11	191	211

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening							
Analyte		Level	USS-SW-A003-B-041217	USS-SW-A003-B-041317	USS-SW-A003-B-041417	USS-SW-A003-B-041517	USS-SW-A003-B-041617	USS-SW-A003-B-041717	USS-SW-A003-B-041817
	ug/L	//	l'au			· · · · //	T		
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC NC	μg/L 6	10 UJ	µg/L 10 UJ	μg/L 1 UJ	µg/L 1 U	µg/L 1 U	µg/L 1 U	µg/L 1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-B001-A-041217	USS-SW-B001-A-041317	USS-SW-B001-A-041417	USS-SW-B001-A-041517	USS-SW-B001-A-041617	USS-SW-B001-A-041717	USS-SW-B001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.2 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-B001-B-041217	USS-SW-B001-B-041317	USS-SW-B001-B-041417	USS-SW-B001-B-041517	USS-SW-B001-B-041617	USS-SW-B001-B-041717	USS-SW-B001-B-041817
	μg/L	ug/L	ug/L	пеД.	μg/L	ug/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.1 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR									
Analyte	MCL	Screening	USS-SW-B002-A-041217	USS-SW-B002-A-041317	USS-SW-B002-A-041417	USS-SW-B002-A-041517	USS-SW-B002-A-041517-D	USS-SW-B002-A-041617	USS-SW-B002-A-041717	USS-SW-B002-A-041817	USS-SW-B002-A-041817-D
	μg/L	Level μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.2 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening								
Analyte		Level	USS-SW-B002-B-041217	USS-SW-B002-B-041317	USS-SW-B002-B-041417	USS-SW-B002-B-041517	USS-SW-B002-B-041617	USS-SW-B002-B-041617-D	USS-SW-B002-B-041717	USS-SW-B002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
Chromium	100		1.8 J	1.4 J	1.3 J	2.7 J	10 U	NA	1.7 J	2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCI	ATSDR							
Analyte	MCL	Screening Level	USS-SW-B003-A-041217	USS-SW-B003-A-041317	USS-SW-B003-A-041417	USS-SW-B003-A-041517	USS-SW-B003-A-041617	USS-SW-B003-A-041717	USS-SW-B003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	4.5 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U
	100								2.2 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-B003-B-041217	USS-SW-B003-B-041317	USS-SW-B003-B-041417	USS-SW-B003-B-041517	USS-SW-B003-B-041617	USS-SW-B003-B-041717	USS-SW-B003-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	3.1 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Annabada	MCL	ATSDR Screening								
Analyte		Level	USS-SW-C001-A-041217	USS-SW-C001-A-041317	USS-SW-C001-A-041317-D	USS-SW-C001-A-041417	USS-SW-C001-A-041517	USS-SW-C001-A-041617	USS-SW-C001-A-041717	USS-SW-C001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	NA	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Annabada	MCL	ATSDR Screening								
Analyte		Level	USS-SW-C001-B-041217	USS-SW-C001-B-041317	USS-SW-C001-B-041417	USS-SW-C001-B-041517	USS-SW-C001-B-041517-D	USS-SW-C001-B-041617	USS-SW-C001-B-041717	USS-SW-C001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

4	MCL	ATSDR Screening								
Analyte		Level	USS-SW-C002-A-041217	USS-SW-C002-A-041317	USS-SW-C002-A-041417	USS-SW-C002-A-041517	USS-SW-C002-A-041617	USS-SW-C002-A-041717	USS-SW-C002-A-041817	USS-SW-C002-A-041817-D
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
Chromium	100		121	171	1.4.1	101	10.11	1.4.1	221	NT A

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening								
Analyte		Level	USS-SW-C002-B-041217	USS-SW-C002-B-041317	USS-SW-C002-B-041417	USS-SW-C002-B-041417-D	USS-SW-C002-B-041517	USS-SW-C002-B-041617	USS-SW-C002-B-041717	USS-SW-C002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.6 J-	10 UI	0.4 J-	1 111	0.3.1	1 11	1.11	1 11

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening	1700 0111 0000 1 011010	1100 0111 0000 1 0 11010	1100 0W1 0000 1 011115	1100 0111 0000 1 011 515	1100 0111 0000 1 011115	1100 0111 0000 1 011E1E	1100 0111 0000 1 011010
		Level	USS-SW-C003-A-041217	USS-SW-C003-A-041317	USS-SW-C003-A-041417	USS-SW-C003-A-041517	USS-SW-C003-A-041617	USS-SW-C003-A-041717	USS-SW-C003-A-041817
	ug/L	μg/L	μg/L	пеЛ	μg/L	μg/L	μg/L	μg/L	ue/I
			P 5 2	P 5/ L	μg/L	μg/L	μg/L	µg/L	μg/L
Hexavalent Chromium	NC NC	6	2.6 J-	10 UJ	2.6 J-	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-C003-B-041217	USS-SW-C003-B-041317	USS-SW-C003-B-041417	USS-SW-C003-B-041517	USS-SW-C003-B-041617	USS-SW-C003-B-041717	USS-SW-C003-B-041817
	μg/L	μg/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	μg/L
Hexavalent Chromium	NC	6	2.1 J-	10 UJ	1 UJ	0.5 J	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-D001-A-041217	USS-SW-D001-A-041317	USS-SW-D001-A-041417	USS-SW-D001-A-041517	USS-SW-D001-A-041617	USS-SW-D001-A-041717	USS-SW-D001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-D001-B-041217	USS-SW-D001-B-041317	USS-SW-D001-B-041417	USS-SW-D001-B-041517	USS-SW-D001-B-041617	USS-SW-D001-B-041717	USS-SW-D001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR									
Analyte	MCL	Screening									
Analyte		Level	USS-SW-D002-A-041217	USS-SW-D002-A-041317	USS-SW-D002-A-041417	USS-SW-D002-A-041517	USS-SW-D002-A-041517-D	USS-SW-D002-A-041617	USS-SW-D002-A-041617-D	USS-SW-D002-A-041717	USS-SW-D002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-D002-B-041217	USS-SW-D002-B-041317	USS-SW-D002-B-041417	USS-SW-D002-B-041517	USS-SW-D002-B-041617	USS-SW-D002-B-041717	USS-SW-D002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	ug/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.5 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-D003-A-041217	USS-SW-D003-A-041317	USS-SW-D003-A-041417	USS-SW-D003-A-041517	USS-SW-D003-A-041617	USS-SW-D003-A-041717	USS-SW-D003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.2 J-	10 UJ	15.5 J-	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-D003-B-041217	USS-SW-D003-B-041317	USS-SW-D003-B-041417	USS-SW-D003-B-041517	USS-SW-D003-B-041617	USS-SW-D003-B-041717	USS-SW-D003-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Annabada	MCL	ATSDR Screening								
Analyte		Level	USS-SW-E001-A-041217	USS-SW-E001-A-041317	USS-SW-E001-A-041417	USS-SW-E001-A-041417-D	USS-SW-E001-A-041517	USS-SW-E001-A-041617	USS-SW-E001-A-041717	USS-SW-E001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	NC									
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-E001-B-041217	USS-SW-E001-B-041317	USS-SW-E001-B-041417	USS-SW-E001-B-041517	USS-SW-E001-B-041617	USS-SW-E001-B-041717	USS-SW-E001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	ug/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Annabada	MCL	ATSDR Screening								
Analyte		Level	USS-SW-E002-A-041217	USS-SW-E002-A-041317	USS-SW-E002-A-041417	USS-SW-E002-A-041517	USS-SW-E002-A-041517-D	USS-SW-E002-A-041617	USS-SW-E002-A-041717	USS-SW-E002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening							
y.c		Level	USS-SW-E002-B-041217	USS-SW-E002-B-041317	USS-SW-E002-B-041417	USS-SW-E002-B-041517	USS-SW-E002-B-041617	USS-SW-E002-B-041717	USS-SW-E002-B-041817
	ug/L	μg/L	μg/L	ue/I	ug/I	/	//		ua/I
		μ5/12	μg/L						
Hexavalent Chromium	NC NC	6	10 UJ	10 UJ	21.5 J-	µg/L 1 U	1 U	1 U	µg/L 1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-E003-A-041217	USS-SW-E003-A-041317	USS-SW-E003-A-041417	USS-SW-E003-A-041517	USS-SW-E003-A-041617	USS-SW-E003-A-041717	USS-SW-E003-A-041817
	μg/L	ug/L	ug/L	ug/L	μg/L	μg/L	ug/L	ug/L	пеД.
Hexavalent Chromium	NC	6	2.2 J-	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening							
Analyte		Level	USS-SW-E003-B-041217	USS-SW-E003-B-041317	USS-SW-E003-B-041417	USS-SW-E003-B-041517	USS-SW-E003-B-041617	USS-SW-E003-B-041717	USS-SW-E003-B-041817
	ug/L	//				· · · · //			
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	μg/L 6	µg/L 10 UJ	µg/L 10 UJ	μg/L 1.4 J-	µg/L 1 U	µg/L 1 U	μg/L 1 U	µg/L 1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-F001-A-041217	USS-SW-F001-A-041317	USS-SW-F001-A-041417	USS-SW-F001-A-041517	USS-SW-F001-A-041617	USS-SW-F001-A-041717	USS-SW-F001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	0.4 J-	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR									
Analuta	MCL	Screening									
Analyte		Level	USS-SW-F001-B-041217	USS-SW-F001-B-041317	USS-SW-F001-B-041317-D	USS-SW-F001-B-041417	USS-SW-F001-B-041417-D	USS-SW-F001-B-041517	USS-SW-F001-B-041617	USS-SW-F001-B-041717	USS-SW-F001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.3 J-	10 UJ	NA	1 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-F002-A-041217	USS-SW-F002-A-041317	USS-SW-F002-A-041417	USS-SW-F002-A-041517	USS-SW-F002-A-041617	USS-SW-F002-A-041717	USS-SW-F002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-F002-B-041217	USS-SW-F002-B-041317	USS-SW-F002-B-041417	USS-SW-F002-B-041517	USS-SW-F002-B-041617	USS-SW-F002-B-041717	USS-SW-F002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening								
Analyte		Level	USS-SW-F003-A-041217	USS-SW-F003-A-041317	USS-SW-F003-A-041317-D	USS-SW-F003-A-041417	USS-SW-F003-A-041517	USS-SW-F003-A-041617	USS-SW-F003-A-041717	USS-SW-F003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	NA	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-F003-B-041217	USS-SW-F003-B	USS-SW-F003-B-041417	USS-SW-F003-B-041517	USS-SW-F003-B-041617	USS-SW-F003-B-041717	USS-SW-F003-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
II	NC	6	2.3 J-	10 UJ	1 UJ	1 11	1 11	1 11	1.11
Hexavalent Chromium	INC		2.33-	10 03	1 03				

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-G001-A-041217	USS-SW-G001-A-041317	USS-SW-G001-A-041417	USS-SW-G001-A-041517	USS-SW-G001-A-041617	USS-SW-G001-A-041717	USS-SW-G001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Australia	MCL	ATSDR Screening								
Analyte		Level	USS-SW-G001-B-041217	USS-SW-G001-B-041317	USS-SW-G001-B-041317-D	USS-SW-G001-B-041417	USS-SW-G001-B-041517	USS-SW-G001-B-041617	USS-SW-G001-B-041717	USS-SW-G001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
11 1 0	NC	,	0.47	10 UJ	10.111	4 777	4.77	4.77	4.77	4 77
Hexavalent Chromium	NC	0	3.6 J-	10 UJ	10 UJ	I UJ	1 U	1 U	10	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening							
. Indiyee		Level	USS-SW-G002-A-041217	USS-SW-G002-A-041317	USS-SW-G002-A-041417	USS-SW-G002-A-041517	USS-SW-G002-A-041617	USS-SW-G002-A-041717	USS-SW-G002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
77 1 0	NC	-	2.4.1	10 UJ	1.2 J-	1.17	1.11	1.11	1 11
Hexavalent Chromium	IVC	U	2.4 J-	10 03	1.2 J-	1 U	10	1 0	10

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-G002-B-041217	USS-SW-G002-B-041317	USS-SW-G002-B-041417	USS-SW-G002-B-041517	USS-SW-G002-B-041617	USS-SW-G002-B-041717	USS-SW-G002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	2.2 J-	2.2 J-	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	1.07	ATSDR							
Analyte	MCL	Screening Level	USS-SW-G003-A-041217	USS-SW-G003-A-041317	USS-SW-G003-A-041417	USS-SW-G003-A-041517	USS-SW-G003-A-041617	USS-SW-G003-A-041717	USS-SW-G003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U
	100					2.6 J		10 U	

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-G003-B-041217	USS-SW-G003-B-041317	USS-SW-G003-B-041417	USS-SW-G003-B-041517	USS-SW-G003-B-041617	USS-SW-G003-B-041717	USS-SW-G003-B-041817
	ug/L	ug/L	u e/I	ue/I	ug/I	пеД.	ug/L	ug/L	μg/L
			μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
Hexavalent Chromium	NC NC	6	2.1 J-	10 UJ	1 UJ	1 U	1 U	μg/L 1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-H001-A-041217	USS-SW-H001-A-041317	USS-SW-H001-A-041417	USS-SW-H001-A-041517	USS-SW-H001-A-041617	USS-SW-H001-A-041717	USS-SW-H001-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-H001-B-041217	USS-SW-H001-B-041317	USS-SW-H001-B-041417	USS-SW-H001-B-041517	USS-SW-H001-B-041617	USS-SW-H001-B-041717	USS-SW-H001-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	NC								
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR									
A 34	MCL	Screening									
Analyte		Level	USS-SW-H002-A-041217	USS-SW-H002-A-041317	USS-SW-H002-A-041417	USS-SW-H002-A-041417-D	USS-SW-H002-A-041517	USS-SW-H002-A-041617	USS-SW-H002-A-041717	USS-SW-H002-A-041717-D	USS-SW-H002-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	3 J-	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-H002-B-041217	USS-SW-H002-B-041317	USS-SW-H002-B-041417	USS-SW-H002-B-041517	USS-SW-H002-B-041617	USS-SW-H002-B-041717	USS-SW-H002-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-H003-A-041217	USS-SW-H003-A041317	USS-SW-H003-A-041417	USS-SW-H003-A-041517	USS-SW-H003-A-041617	USS-SW-H003-A-041717	USS-SW-H003-A-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	NO	,	10.777	40 111	4 7 77	4.77	4.77	4.77	1.17
Hexavalent Chromium	NC	0	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 0

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-H003-B-041217	USS-SW-H003-B-041317	USS-SW-H003-B-041417	USS-SW-H003-B-041517	USS-SW-H003-B-041617	USS-SW-H003-B-041717	USS-SW-H003-B-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
Analyte	MCL	Screening Level	USS-SW-BB02-041317	USS-SW-BB02-041317-D	USS-SW-BB02-041417	USS-SW-BB02-041517	USS-SW-BB02-041617	USS-SW-BB02-041717	USS-SW-BB02-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	0.01 UJ	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening							
Analyte		Level	USS-SW-PB02-041317	USS-SW-PB02-041417	USS-SW-PB02-041517	USS-SW-PB02-041617	USS-SW-PB02-041617-D	USS-SW-PB02-041717	USS-SW-PB02-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL µg/L	ATSDR Screening Level	USS-SW-KB02-041317	USS-SW-KB02-041417	USS-SW-KB02-041517	USS-SW-KB02-041617	USS-SW-KB02-041717
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	1 UJ	1 U	1 U	1 U
Chromium	100	-	NA	NA	NA	NA	NA

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-DB02-041317	USS-SW-DB02-041417	USS-SW-DB02-041517	USS-SW-DB02-041517-D	USS-SW-DB02-041617	USS-SW-DB02-041717
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	1 UJ	1 U	1 U	1 U	1 U
Chromium	100	-	NA	NA	NA	NA	NA	NA

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening								
Analyte		Level	USS-SW-WB02-041317	USS-SW-WB02-041417	USS-SW-WB02-041417-D	USS-SW-WB02-041517	USS-SW-WB02-041617	USS-SW-WB02-041717	USS-SW-WB02-041717-D	USS-SW-WB02-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
Chromium	100	-	NA	NA	NA	NA	NA	NA	NA	NA

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

	MCL	ATSDR Screening						
Analyte		Level	USS-SW-OD02-041317	USS-SW-OD02-041417	USS-SW-OD02-041517	USS-SW-OD02-041617	USS-SW-OD02-041717	USS-SW-OD02-041817
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	1 UJ	1 U	1 U	1 U	1 U
Chromium	100		NA	NA	NA	NA	NA	NA

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-PL02-041317	USS-SW-PL02-041417	USS-SW-PL02-041517	USS-SW-PL02-041617	USS-SW-PL02-041717	USS-SW-PL02-041817	USS-SW-PL02-041817-D
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	0.01 UJ	5.9 J-	1 U	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening											
Anaiyte		Level	USS-SW-INTAKE-A-041217	USS-SW-INTAKE-A-041217-D	USS-SW-INTAKE-A-041317	USS-SW-INTAKE-A-041317-D	USS-SW-INTAKE-A-041417	USS-SW-INTAKE-A-041517	USS-SW-INTAKE-A-041617	USS-SW-INTAKE-A-041717	USS-SW-INTAKE-A-041717-D	USS-SW-INTAKE-A-041817	USS-SW-INTAKE-A-041817-D
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	10 UJ	10 UJ	10 U	NA	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U
Chromium	100	-	2.1	2	2 J	1.8 J	10 U	0.9 J	1 J	0.76 J	NA	0.99 J	NA

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligms per kilogram
 mg/kg Milligms per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

		ATSDR							
	MCL	Screening							
Analyte		Level	USS-SW-INTAKE-B-041217	USS-SW-INTAKE-B-041317	USS-SW-INTAKE-B-041417	USS-SW-INTAKE-B-041517	USS-SW-INTAKE-B-041617	USS-SW-INTAKE-B-041717	USS-SW-INTAKE-B-041817
	μg/L	μg/L	μg/L	ue/I	ug/I	μg/L	μg/L	μg/L	не/І
				μg/L	μg/L	μg/L	μg/L		μg/L
Hexavalent Chromium	NC	6	10 UJ	10 U	1 UJ	1 U	1 U	1 U	1 U

- Notes

 NA Not Analyzed

 NC No Criteria

 mg/kg Miligram per kilogram

 g/kg Miligram per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.

 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered upproximate due to deficiencies in one or more quality control criteria.

Analyte	MCL	ATSDR Screening Level	USS-SW-001-041117	USS-DW-Wetwell-041217
	μg/L	μg/L	μg/L	μg/L
Hexavalent Chromium	NC	6	990	10 UJ
Chromium	100	-	-	0.94 J

- Notes

 NA Not Analyzed

 NC No Criteria
 mg/kg Milligrams per kilogram
 mg/kg Milligrams per kilogram
 J The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
 The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may
 be biased low.

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered
 approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	EPA Ecological	USS-SS-BB01-041217	USS-SS-BB01-041317	USS-SS-BB01-041317-D	USS-SS-BB01-041417	USS-SS-BB01-041517	USS-SS-BB01-041617	USS-SS-BB01-041617-D	USS-SS-BB01-041717	USS-SS-BB01-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30		0.4 U	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	1.9 U
Chromium	NC	43.4	NA	NA	NA	2.9	4.1	6.6	3.4	1.3	2.7

Notes

NA Not Analyzed

NC No Criteria

mg/kg Milligms per kilogram

The analyte was positively identified; the associated value is the approximate concentration of
the analyte was positively identified; the associated value is the approximate concentration of
the analyte was positively identified; the associated value is the approximate concentration of
the analyte was analyzed for, but was not detected at or above the associated value (reporting
limit).

U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-BB02-041217	USS-SS-BB02-041317	USS-SS-BB02-041317-D	USS-SS-BB02-041417	USS-SS-BB02-041517	USS-SS-BB02-041617	USS-SS-BB02-041717	USS-SS-BB02-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	NA	4.2	3.6	5.1	5.8	7.3

- Notes

 NA Not Analyzed

 NC No Criteria

 mgkg Milligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 U limit).

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential							
Analyte	Soil)	USS-SS-DB01-041217	USS-SS-DB01-041317	USS-SS-DB01-041417	USS-SS-DB01-041517	USS-SS-DB01-041617	USS-SS-DB01-041717	USS-SS-DB01-041717-D
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	7.3 J-	1.9 U	2 U
Chromium	NC	NA	NA	4.3	3.4	5.4	4.1	2.6

Notes

NA Not Analyzed

NC No Criteria

mg/kg Milligrams per kilogram

The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting Ulinit).

Under the analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-DB02-041217	USS-SS-DB02-041317	USS-SS-DB02-041417	USS-SS-DB02-041517	USS-SS-DB02-041617	USS-SS-DB02-041717
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	1.9 U	2 U
Chromium	NC	NA	NA	5.2	3.5	4.3	1.8

- Notes

 NA Not Analyzed

 NC No Criteria

 The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 Under the analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential						
Analyte	Soil)	USS-SS-KB01-041217	USS-SS-KB01-041317	USS-SS-KB01-041417	USS-SS-KB01-041517	USS-SS-KB01-041617	USS-SS-KB01-041717
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	1.5	2.8	2	1.9

- Notes

 NA Not Analyzed

 NC No Criteria

 The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting Ulimit).

 Ulimit)

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-KB02-041217	USS-SS-KB02-041317	USS-SS-KB02-041417	USS-SS-KB02-041517	USS-SS-KB02-041617	USS-SS-KB02-041717
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	4.8	2.9	1.4	2.3

- Notes

 NA Not Analyzed

 NC No Criteria

 The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting Ulimit).

 Ulimit)

 The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-OD01-041217	USS-SS-OD01-041317	USS-SS-OD01-041417	USS-SS-OD01-041517	USS-SS-OD01-041517-D	USS-SS-OD01-041617	USS-SS-OD01-041717	USS-SS-OD01-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	1.9 U
Chromium	NC	NA	NA	2.1	5.9	3.2	2.2	2.1	1.3

Notes

NA Not Analyzed

NC No Criteria

mgkg Milligrams per kilogram

J The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

U limit).

U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential							
Analyte	Soil)	USS-SS-OD02-041217	USS-SS-OD02-041317	USS-SS-OD02-041417	USS-SS-OD02-041517	USS-SS-OD02-041617	USS-SS-OD02-041717	USS-SS-OD02-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	1.9 U	1.9 U
Chromium	NC	NA	NA	2.8	1.4	3.4	2	4.3

Notes

NA Not Analyzed

NC No Criteria

The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

UI The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential							
Analyte	Soil)	USS-SS-PB01-041217	USS-SS-PB01-041317	USS-SS-PB01-041417	USS-SS-PB01-041517	USS-SS-PB01-041617	USS-SS-PB01-041717	USS-SS-PB01-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	6.7	2.8	3.9	2.5	1.8

Notes

NA Not Analyzed

NC No Criteria

mg/kg Milligrams per kilogram

The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting Ulinit).

Under the analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential										
Analyte	Soil)	USS-SS-PB02-041217	USS-SS-PB02-041317	USS-SS-PB02-041417	USS-SS-PB02-041517	USS-SS-PB02-041517-D	USS-SS-PB02-041617	USS-SS-PB02-041717	USS-SS-PB02-041717-D	USS-SS-PB02-041817	USS-SS-PB02-041817-D
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	2.2	2.9	3.9	1.9	3.7	2.8	9.2 J	3.6 J

Notes

NA Not Analyzed

NC No Criteria

mg/kg Milligrams per kilogram

The analyte was positively identified; the associated value is the approximate concentration of
the analyte was positively identified; the associated value is the approximate concentration of
the analyte was positively identified; the associated value is the approximate concentration of
the analyte was analyzed for, but was not detected at or above the associated value (reporting
U limit).

UThe analyte was analyzed for, but was not detected at or above the associated value (reporting
UThe analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential								
Analyte	Soil)	USS-SS-PL01-041217	USS-SS-PL01-041317	USS-SS-PL01-041417	USS-SS-PL01-041417-D	USS-SS-PL01-041517	USS-SS-PL01-041617	USS-SS-PL01-041717	USS-SS-PL01-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	1.9 U
Chromium	NC	NA	NA	2.2	2.9	4.6	3.5	3.3	2.7

Notes

NA Not Analyzed

NC No Criteria

mgkg Milligrams per kilogram

J The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

U limit).

U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-PL02-041217	USS-SS-PL02-041317	USS-SS-PL02-041417	USS-SS-PL02-041417-D	USS-SS-PL02-041517	USS-SS-PL02-041617	USS-SS-PL02-041717	USS-SS-PL02-041817
·	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	3.5 J	10 J	5.6	2.4	8.7	4.8

- Notes

 NA Not Analyzed

 NC No Criteria

 mgkg Milligrams per kilogram

 J The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

 U limit).

 U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Analyte	EPA RML (Residential Soil)	USS-SS-WB01-041217	USS-SS-WB01-041317	USS-SS-WB01-041417	USS-SS-WB01-041517	USS-SS-WB01-041617	USS-SS-WB01-041717	USS-SS-WB01-041817	USS-SS-WB01-041817-D
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	1.9 U	2 U	1.9 U	2 U
Chromium	NC	NA	NA	3.5	3.9	3.8	1.8	7.4	3.8

Notes

NA Not Analyzed

NC No Criteria

mgkg Milligrams per kilogram

J The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

U limit).

U The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

	EPA RML (Residential								
Analyte	Soil)	USS-SS-WB02-041217	USS-SS-WB02-041317	USS-SS-WB02-041417	USS-SS-WB02-041517	USS-SS-WB02-041617	USS-SS-WB02-041617-D	USS-SS-WB02-041717	USS-SS-WB02-041817
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Hexavalent Chromium	30	0.4 U	0.4 U	2 U	2 U	2 U	2 U	2 U	2 U
Chromium	NC	NA	NA	4.6	3	1.6	3.3	1.8	2.4

Notes

NA Not Analyzed

NC No Criteria

mgkg Milligramsper kilogram

pgkg Milligramsper kilogram

The analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was positively identified; the associated value is the approximate concentration of the analyte was analyzed for, but was not detected at or above the associated value (reporting limit).

UI The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

APPENDIX C FIELD LOG BOOK NOTES

Address _____

Phone _____

Project US Steel Hex CY Release CH211

CONTENTS

PAGE	REFERENCE	DATE
	Not the second of the second o	
	- The state of the	. 18
	A STATE OF THE PARTY OF THE PAR	1
-		
		4
		100 EU
		- 6
		10
-		
	- 25-12	
		Carac
		1
*	- 67/3 ANY 1 E - 1	
		(a = v)
		7

184 DAYS

BC MIXED TO CREATE

1.6%		9 1/4/				4/10/1	-
1510 -	TAUNCE	Enac	יוטיואס	w. +	PLE	CIPITA	TE
1515-	NEED	70	BEG	N 3	owe	ws;	
	AND						
1620 -							
an and	TO 8					1 1	
ne en	STEEC	Section 1		1	1		1
	TAKIA					1 1	
16 25 -					Daniel Land	The Market State	-
	PHZ				10		
The second secon	TEMP =					34	-
	D0 2						T
1630 -			A COLUMN TO A COLU		on f	+ <	-
1030	pH=						
	TEMP				06.00		
	100000000000000000000000000000000000000	0.000					
	Do t		- 100				P
1640 -				1	A COUNTY OF	1	
	pt(=				1 1 1 1 1	480 ~	1
	Temp:	5548 (8)	1000		of .	11. (*	v
	00=						-
1658 -		177.5					
-					mpl	1	
			100	District I	3	Emy 5	
700-	MARI	UE	0	Buirs	124	W4177	NG
1	Fon	TEM	m 5	70	man	100	

4/11/12

Rite in the Rain.

100		4/12/13								
0915 -	STARRE BUTTON	+ HOULE) ARRIVE								
	ONSINC; EX	20, APS, Locare								
	POLICE, IDE	u, USS STEFE								
		ER DNSITE								
1040-	BUTTON TO									
	BURNS DI									
1000										
1022	- W& @ A1/									
	Temp: 13.2									
	Ph = 4.57									
	SPC: 4244	s/cm								
	OLY 2 85 W	V								
4	00. \$166 m	1/4								
	COLLEGE SH									
lacs.		- ADOI-1/8-041217								
SC174										
	and the second s	- 14002-A/B-541217								
1059		-A003-A/8-041217								
100	MONE TO	COCHTION B								
1110	- we @ Loca	TION B								
	TEMP = 13.21	Do: 8.22								
	PH : 7.58	ORP: 73.4								
- 12	Spc - 426									
1115		1-8001-A/B-041217								
_										
		U-8002-A/B-041212								
1115	-10: 455 - 34	1 - BOO3 - A/B - 041217								

4/12/12

Rite in the Rain.

1320 -USS- SW-002 AB 500 YNS WEST 1330 - USS - 5W - 00 3A/B 300 yds From INLET BACKNOTE: 1240 - COLLECT STUDIE & INTIME. 10: USS-SW-INTAKE-ABOUT) 1340 - USS-SW-004; 250 YAS EAST 1810 - GNEN SIGNER BY AN WHORK May escrit when Rete in the Rain

		450													-
XS			50	٥	7.	ls	E	M 50	- (6	E.	77	امان	C	5
13	2.5														
13	15		25												
			25	0	ds	-		التي		- 1	707	Lago	Uc.		В-
13	205	_											س عا	Es (
		I	455	- (5 u	-6	02	1	B -	04	13	17		9	0
12 :	5-		col	LE	Gr.		540	MPL	E5		NE	HR	- 6	ta	the same
		50	BUR								wc	_	-	200	
			EMD		1000						1				
	13-			_	-	-	_		1000		_	-	1		
	32-		SIN					1	100	1					i
7	30-							1	9/8	1		20		Δ.	-0-
	22-		-						9/8					_	_
	18-					1	1		18						
12	14-							l - 1	1/8						

0840 - START (BUTTON, HOULE, McCAMER) ARRIVE ONSITE. WEATHER! 45° MOSTY Clary, E 9 mps wind, 30% chance of Rin 0915 - Morning meeting to discuss Start up plan /work plan for the day. EPA, NPS, FIDEM all on ste. 1020 Begin Sampling near entrance of Burns diten. Collect Samples near enfrance USS-5W-003 A/B-041417 630 250 pards boost of entract 1035 USS - SW-002 A/B - 041417 500 yards wast of Entrance 1040 USS-SW-006 A/B-041417 1/4 mile from store (1) 56007A C war 2006! Temp : 7.44 Card: 127 1050 RSD Vards Fast of Chitanee
Battery & per: Dumo died Back to
Shore to Dick up new one 1213

		4/14/17
•	1655-5w-6	of AB - 44/7
		rds cast of Ortrance
		rying 1/2 mile from
	Share Q	new locations
		08 A/B -04/4/7
	12 (14 CA)	from shore NE of extan
30		009 A16-04/4/7
	1/2 mic	N of catronica
	USS-5W-	010 HB-0417 7 Dp.
		Ne of corrance
		KI A13-041417
	Trans. Carrotte Company of the Compa	out to of Stu-do
	7.4	012A/B-04/467
	The second secon	out, wot sw-011
Becklo	: 12/5 WA (2 2-51 E (Ja - day)
_	Temp: 684	pti: 4.35
	00: 13.63	pt: 4.35 ORP' 6.3.3
	Sp Cond .:	(80
Buen	69 1 (24%) Jeno 16	ua a Surara
	00:12.	59 ORP: 52.3
	Sp. Condils	o win channel
1300	Began Sun	plang seechber en
13/0	UG- SW-A	
-	4	Rete in the Rain.

18 4 16	ι Π -					4(6)	לא											15	19
0938	ひとらい	A003-0	41617		ms/msb A	1125	- 6	ten	4	909	L								2.4
0952		X007			1	- V 10.5	A. T. S. Brancher		-			- be	m.	Scool	de	prex	es:	h	100
0954		Acol				153	5		3)									,	
0957	4	3007			ms mod A		offs	تلو						1		-			-
0959	8 2	B007			DUP-B									1				pd d	
1001	14	8001											1	1				-	-
1013		H001	-	10										-			4 1 7	- 2	+ 11
1015		4005										/							
1017		H003																	HT PA
1020		GOUZ									/							1	
1022		6002									/							- 1	
1024		GOUI	F=1.								/								1.5
1027		F001	4		1 - 1					/	/			-			-	=	
(0 20		F002								/		-							-
1033		F003																	
1036		£003				1													2 15
1039		EDUZ			3/11					-			2					-	
1042		ECOL																	
1045		1000															. "		
LOYB		2000	- 4		Due-A												*		
1051	21	D003														0.7			
1054		(00)																	
1657	3	COOZ	+ "					1	.15	1	-								
1100		(200)			•		63	ૃપ્	la		1								
	524		350	4/16/17			0,							11,		Ra	tin	ere K	2in

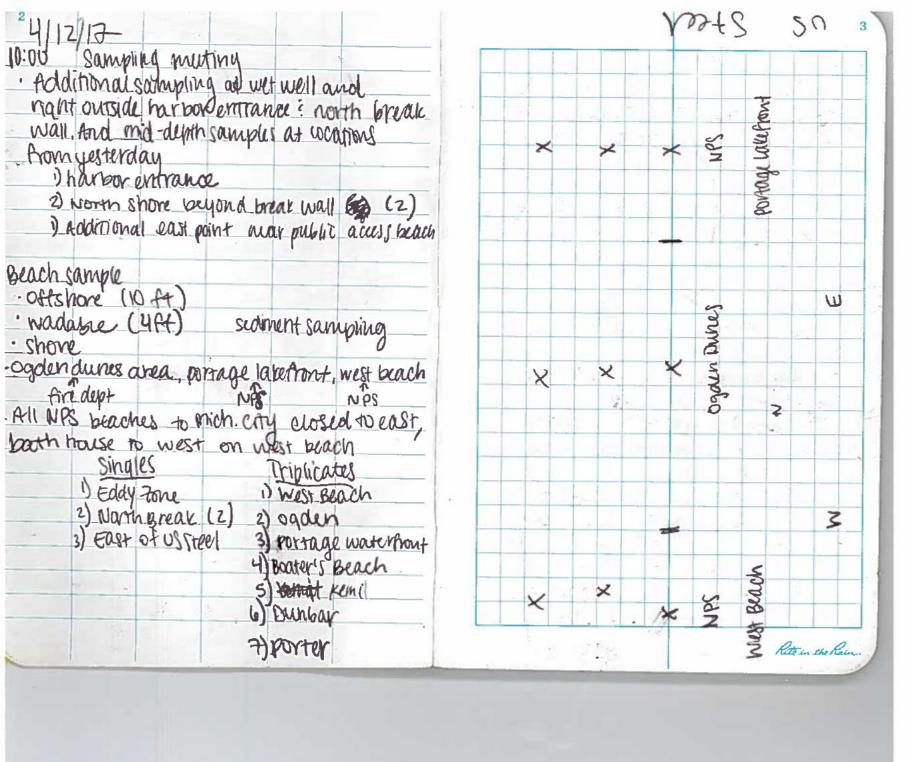
1 m. L

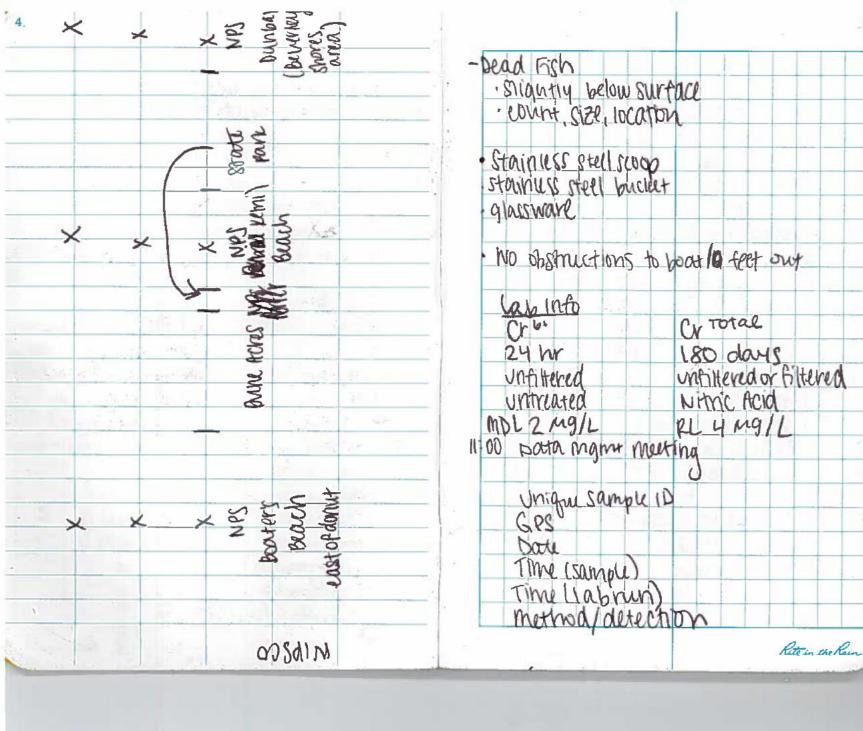
2917/17	with ce	11400	es a constant	4(12)1	7	2.			
0815 (8)	US Stel stage	y oreer		1057	455-50- ADO3-041717 A)	В			
0925 dep	1 1 4006 to	teritage (2)	ALS (Bed)	1959	A002	on s/mso-			
1	o In Anexon	المعلق بمول		liot	A-001				
				1106	8003				
0945 WS	5-54-004-0417	117 AB		1108	5005	WB WAD-1			
०५५४	005			1110	8001				
0951	රුව		ms/msb A	11 51	1004				
454	009			1123	Houz	DUB-A			
10957	010		:	1122	4003	411			
LEDE	Oll		2 1 1	4(28	G003				
1017	612		ms/msp A	N3H	COOZ				
1020	MAKE		BUF A	HED	6001				
1027	007		100	1131	Fool				
1048	006			1140	FOOZ				
1051	002			143	F003				
1053	003		BUF-A	HUL	E803				
				446	EOOZ				
				452	EDOI				
			100	1155	Dool				
			· _	457	2090	+ 3			
				1159	0003				
				IZU	CeOl	rc			
	/			1203	C80 %	->u-/			
14.	4/17/17			1205	6003				

²²					4/10/17						23
1230 @ USS S	kel stage	7000	Ł	11.74(2)	0805	ansite @	us Stel	slaur	ر لحام	xe	
begin process	y sapes			- 51	0935	denot	dock.				
1640 complete:	scrope broad	en -	ausa d	upol of							2
Pace cou	-03				0946	USS.5W-	24-041	617 N	8	-	112
MOD meeting o	ussten) sh	والمو	slexe		0949		005		2		
1750 Sandes te					0954		රගති			,	
1800 office -	7				0957		900	- 2		MSA	Jes.
					000		010				
75					1003		011			NIA	29.
				-	1006		012				
				200	100		CHOAKE	4		DIE	·A
- 38 10					1030		007				
		100		Jan .	622		004				
					10-36		002		44		
<i>f</i> - •		24.0	**		1034		003			M .	A
								100			
				7				200			
		-									-
4		_	-			-	1 5				3
BX	10/0			0.0						- 1	
ax.	11						,		-		100

24 4 18	17			-							2
056	USS-SU-AC	23-04	(1817	A/B		TIT			·		-
059	Ao	02		L Bust							
コント	AC	10			1		-				F
110		E04		1							
112	4 -> Bo	02 -		~	Dur-A			100			
Hart.	4 -> Bo	61-A					1 .				-
INSI	HO	10									
176	HO	20									
851	Hot	33									200
סרון	66	43			4						
いって	GO	50	1 2	1	Modern A						
1134	Ga) /c			1		9.				
136	fol	10					-				
138	FOL	20	4	4	makes A						
OF !	Fol	83									
SPH	EOO	3									
HAA	Eac	2		5							
1146	EX	10		14							1
449	Do	10		*		* 2		1			
158	DOC	2						1			
N25	Do	93			1			1	-		
1154	CDO	1			V			1		7.	F
1156	COO	2			Pur · A				1		-
1156	C60	3							1		
1		-							Ritein		=

Name	
Address	
Phone	


Project US Steel Hexcy Lelease CH212



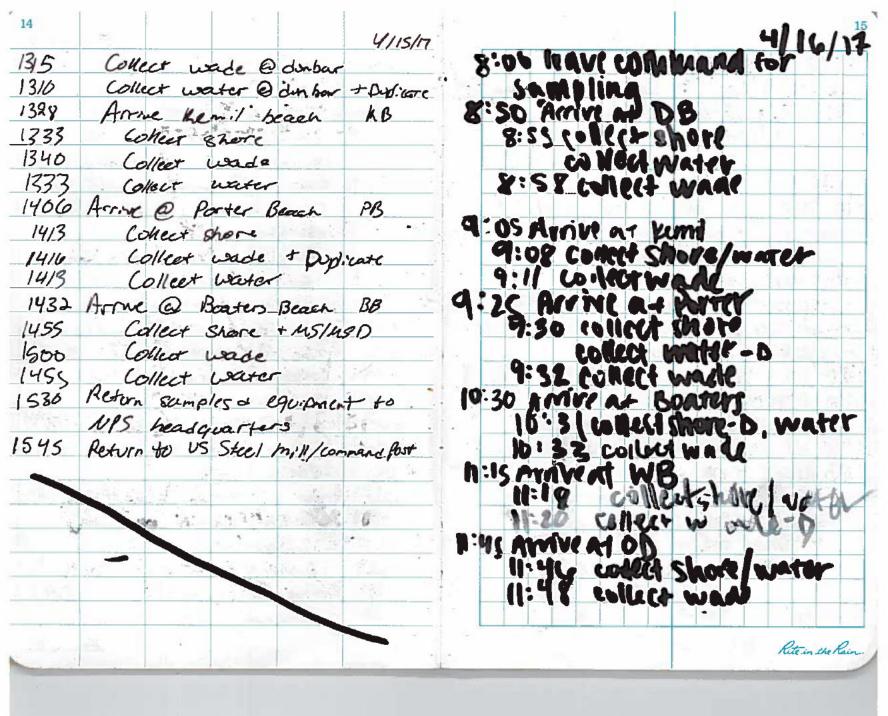
CONTENTS

PAGE	REFERENCE	DATE
	THE PARTITION OF THE PARTY OF THE	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	4 E 10 A 1	1
	illym	
	2 10 2	
	- NO	
	E ILI NAME & SUPE	
	- Labor 4	
-	- Para-	
3 I		
		277
		A. F.

U					
12:30	AMIVE at	NPS ST	ation to	get ofear	r hos
13:00	head o	ULWIT	h Grea	propin us	Steale
	and Ji	DE PLOV	in NBB	(1 , 11)	
13:10	prive	to ou	nbar	DE	3
	N 41.4			1	1 2 1
	M 87,00			P	17
13:25	colle	4 val	a zones	ample	
13:40	collect	4" San	me		
13:00	AMNY		ni)	KE	2
		40.909			
20.00	M 087°	00.590	0	1000	1.6
13:27	col Wa	t SVWW	1 Journal	le	
14:00	WILL	wall	tone So	mple	
14:00	AMIVE	M POY	ter	. Pi	3
	N 41°	341.661		111111111111111111111111111111111111111	Tr.
111116		04.14Z			1.11
14:25	0.1100	t snoce	Sample	0.1	
14:30	Collect	ot Au	-000 00 P	2001 F	2
5:15				each t	
- Company	10	41,39	10.0		Sel.
15:25	C-110C	87000.	ONIA	no io	-1
15 30	Dallagi	T-SYIOVY	Samp	h W	4
70 30	Column 1	Diving	-2000	Ů.	
			. 4		

				6		
He: IS BY	nve ad	West	beaci	1	NB	
N	41037	.584		1		
k oc C	1580	1.48	100	. Lati		4
16.30 C	OUCC	7110KM	244	14		+
10-20 6	D-NUC+	MACAG	LJum	pu		
14:50.	AVAVO C	ctood	enbo	ach	OD)
1	1 41037	W78	17:0	DO Coll	ect fin	ore.
T/A	1 41037	,909	17:0	S CMI	ectv	ad
17:15 P	myle a	1 POVT	age la	Kefron	of ?	PL
	14193	7.83	50			
	08791			e e		
17:25 c	412 110	sha	SOLWID	le	. 1	1
17:35 0	ollet	work	1 Sant	ple		
17:45 1	mive	back	at v	Stell	1	
+	o proce	ss sour	nples			
namin	y for	8ed-5	ample	3		
		10	4.0	100		-
470	SS-D	201	DAMA	t he	ach)	
01	Pocat	1071	200	11 60	ALT.	1
01-	Sampl	clan	20110			
	67	- JAKOK	eline le zor	0		
21 -11 -12					7	0
20 GRAN	and the	mstr		Æ	te in the	Kain

8 11/12	113	
19:30	AMVE on site	1
3 31)	Leave Site At NPS station	
1:18	arrive at Dunbar beach	DB
45	Wrive at Dunbar beach 41°46.055'	Diffe.
	087-00.228	1
1:25	ustua show comple	
1:28	coilly water samples	15.
	COLULT MANUE SOTHOUS	
1.43	Avrive at remils Beach	46
141	41.41.0SS	I In SV
	587°00.228	
11:SO	would shore sample	
1/:52	silect water sample	6 - 1
1:68	collect shad samply	10.0
12:15	Arrive at porter beach 41°39, viel	PB
	087°04.167	
15:70	Caluat shave	9 10
12:12	coluctivatel	
12:24	collect was	010
13:20	privile at booters beach	BB
	41039.004	
(0.	587°06,470	
13:22	collect shore and disp	
13:20		4. 4.7


13:30	coluc	- WO	rte O	nch di	16			
4:25	01//1	J (At	10195-	- place	1	1	VB	
100			584				1	
			479		7			
14:30	colle							
14.34					ν.	er,		-
14:38		t wa						
15:05	arnive	100		Lune		TO	>	
10 02	MACA	w Cu	Day A	hore	2	uske	dak era	you
	MBCA	37.	123	il caun	30		CALANT	1
		011.0				-01	socmi	C
10 - 17	0016			FOLIMA	2010	IC.	1000	lo
16:10	\$00	at sh	1200	30.4	0	₹.ل:	mag	e
6:4T	Arave	4 713	DYUS	anip	In A	1	P	1
	colm	L	07 100	C CUIR	2170	PLI	-	
15:50	Collet	2/1/2	MICH					
13:25				-	1 10	14		
17.7	Colle							
2	4020	37.8	36					-
8:30 s	0870	10 1 E	A	520	716	-		
0.00	mby (yr	IND	YACAA	JITC				
1			2					
-		_						-
			1				-	-
					2 7			3.1

10 4/14/1:						-
8:30		nsite for	morning	meeth	10\	
9:00	Morning	Mostiv	ia, addini		mple points	
	in lake	adden	dunes		N.	
2:1	Arriveto	Wes: 18	each	00	MB	
10 2		unproj			4-11	
	pink >					
11:22	collect !	Wore 8	anyle	4		
1:26	collect					
11:35	collect	wade	2			
11:85			beach	7	MB	
12:06	convect	Thore				
16:05	court	vade:	$\rightarrow \mathcal{D}$	MP		
12.16	on luct	wade		12135	shore P	2
12:30	AYYIVE O	st form	rac -	12:39	wade	
13:10	Amile a			12:45	water	1
13:1S		nove sa	nuble	OB	4.4	
73:19	Go rect	water	ANMOU.	1	41/11	
13:25	collec-	wad	e same	les		j
13:30.	emove	at ke	MU			
13:35	coilect	wate'	r	May 194		1
13:38	The second secon	Snore	-16			-
13:40		ctwa				-
13:55		at P	mer			
14:00	collect	Shore				
14:04		woole				1
	Ĭ	, , ,			17 10	

14:5	80	61	DIL	lCt	1	CH	ON	7	•		1			1
Lite									VT	1	1		T	
14:	65	N	51	0.0	4 5	Clas	100		2		1 1		ī	
18:	00			OCL	7-0	Allo	Int.	0		77			T	3.
10.	52	- (יוט	140	L	UU		-					t	1
15:	U.L	-	vi	uc	1-1	0.0	KX	Y					t	
Tot	aΛ	200	NA!	20	1001	- 10	ni	na	-	-		-	+	
Tot	~ .	WI!	IAI	r1_	Per	10	uci	IO: I	•				+	-
	SI		. /	1		1	~	n		. 10	2		-	
4	MI	Help		L	2.	1	51	4 1-	2	VY.	2)	1.	. 0	20
3	D	BT	nV	21	oa.	ex	-	m	6	a,	é	(18	Sto
FI	Y 81	rmy	16	p	14	221	ng.	24	-					* 1
	_		- 15				0	11		17	-	: F		
1:00	2	TAP	7	De	mo	معاد				. 15		*		
(:00	2	TAP	7	De	mo	بطاد					31.4			lag-se
(:00	2	TAP	ㅋ	De	mo	بطاد				1 45				
1:00	2	TAP	7	De	mo	بطاد					. 4		*	
1:00	8	TAR	7	O.	mo	رماد								
1:00	8	TAR	サー	O.	mo	ماد								
1:00	2	TAR	7	De	mo	بطاد								
1:00		TAK	7	O.	mo	رماد								
1:00	2	TAK	7	O.	mo	ر ما د								
1:00		TAR	1	or .	mo	100								
1:00	8	TAR	1	OL.	mo	1								
1:00	8	TAP	1	or	me) b								

12 CAnonia obdata				
sample order i) west seach				
2) coden bunes	(tothe	east inf	front of i	range boot)
3) portage Lak 4) Dunbar Bla	ch	17		
5) Kemil beach		- 11.		,
6) Porter beach 7) Boaters beach	h (to the	left just	inside	of posts)
		204		
English Charles				
Fire Tr				4
	4			
L.				
	-31			1
				-
Ty.				
		1,9		
-1-				
	i Av	none manufacture for		

				,		+ 100	4/15	5/17
815	: 57	ART	(ma	Carre	11, 1	nox,	Beten.	ريا
		5.4 c						
WEAT.	HER:	106°	no	Mu &	Sunn	4, 5	13	nol
	L	ر اعمدد	10%	CA	ance	مے (ra.n	
	- USS	Sree	bus	× 00	4 50	אי ממנ	ler.	
	- His	5 of	Here	- m	w	ater w	عدر م	
	D.	tch t	lake	+1	Std.	ent	Same	de
		Por						
	te	emp	high	, ma	4 10	r de	0896	ic
	- 0	ent in	ve	San	DINA	-10	m E	PA,
	U	5 5+	each	4 5	Todas	na (عدون	~
1015	Bega	en i	Sedm	ent	- Sc	amp	1.ng	
1030	Arra	re 6	w	est	Bea	21	Ku	B)
110	(0)	lect	She	1	+ W	ater	-	
	-	7.2						
140	Acces	· @	Oal	cen i	mo	5	(0	D)
1150	C	Hect	She	ereli)the	ster	+A	D
1155	C	sucest	w	ade				
1220	Acres	e @	Por	tage	6	Ken	n+ (PL
1227	0					Y		
1230	0							
1227	1	coller	+ w	ater				
300	Arri	ve 6	2 0	nbar	Ba	ch	(DI	31
1318	1	alle	_ S	hore		75.28		

4/17/17

8:15 START arrive on site (Houle), CNOFT, Knox)
Weather: 67, parmy cloudy, N wind 4 mph,

0% onauce of rain

9:00 Morning mutiling

· Operations all stable at ansite WTP

anyissues we chrome plant should be detected

before S octock meeting

10:20 Crave ranger lab 20 beach (Dunbar)

1) to Amy At DB

10:39 collect shore - bup

10:42 water, ward

10:59 collect shore/water

1:15 Arrive at payor

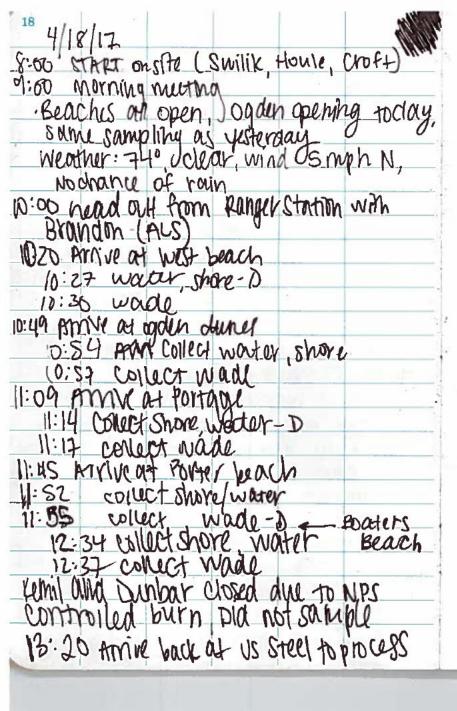
11-25 collect mater, worde

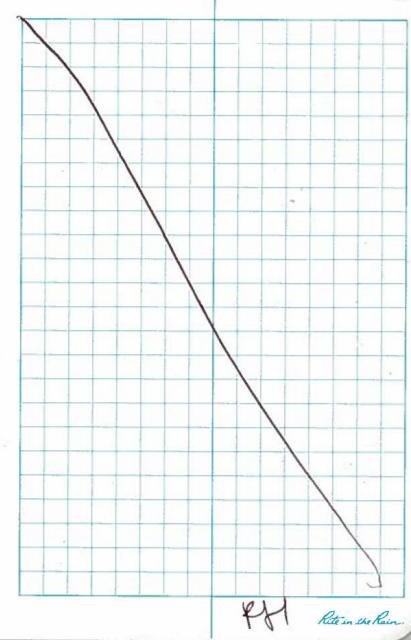
(1:23 corlect wade-D

11:54 Annive at Boaters

11:28 collect share mother

collect wade 12:37 Arrive of West Beach 12:45 collect shore/water-D 17-48 COllect Words 13 the trive at byden burner 13:13 callet water shore 13:16 collect wade 3:31 Armive at Portage 3:38 collect shore/waret 3:41 collet made Collected somples w brandon (ALS) and JOE (NPS 13:50 Arrive on site to process samples 17:00 5 o'clock meeting · Parks reopening topporrau, pH and spec conductivity going up again, again, shoring by tomorrow too ·US steel chrome lines up and running


> - 298 lbs Hex Cr 9 am neeting Tomorrow, him ingsor last days


24-hr monitoring until tomorrow day.

Final release dotta from USS letter to

- 3491 hs Total C1

IDEM

	Address			
Phone	Phone		 	

Name

Project US Steel Hex Cr pelease CH 213

CONTENTS

PAGE	REFERENCE	DATE
		-
-		
	(v)	
		-
		1
		* * 35
		31
-		
		-
	N 3 -	
		19/51
		21
	3, # 2000	18981

1300	1117 Output monitoring outflow w/YSI 0041	4/14/17
Upode	cam (500 ft south of outfall)	Time 14.0
Temp	13.9	Zippop Kill
7007	854	00%. & 8
Do my	IL BATA	Dom/13-79
Cond.	537	Cond. 544
PH	7.84	PH 7 eu
At o	vf-flav 14.4	opening to bang
Dogle	7 88.7	Conductivity varies between 600 + 8760
	n aa	atreetly below aution (north)
Conducti	vity 625	(344
PH		Teny 14.0
	instream (500 ft north of outflow)	5. 43 %
Temp		DOM! S. CA
400 SC 18 C	83.5	Cond 547 Z
Do my/L	3.64	PH 7.90
cond.	568	Upstream conductivity drops to 500s south
PH	7.50	of artale
1330		conductivity unid 5005 western sike of come
	d outflow for plant start	1348
Temp	t outflow for plant stort 4.1 Background	Tonep 14.
DOKK	रमवान्त्र	Do7. gr. 4 Dom/4 g. 93
No %	あらい	for GO
Oo my/	9.70 182 7.87	PH 7.89 at outfall Rete in the Rese

4 4/14/17 Conductivit	n range	ges from	530 to	719 moving
north din	e of hy pas	st ovaflo	w	341
1350	, ,		- 119	F1 70
conductivity	ranges	betwee	pm n	500 s
of 610 peak	my at ou	thow m	wany 5	outh
past with			0	
1354 cd out	and the same of th		12,11	144
TEMP14.1		-		1
26.85-1		"YELE	100	
म्प्रहुम्प		-11		
con1.546				
PHT AZ				
Do peaks	+ 90%	at outf	au .	
Temp14-4 DOPO 84-5			-	4 4
Dome 91				
cond. 656				
pH 7_97			-0.1	
1401 oust 61				
1410 put 600			av .	
cubove outflo	nu (sout	4)	1000	
Tang 13.8	_			The second
DOT. 85.5				101.47
Dory 8.83				
en. 528				
ph 7.92		1	W	100
			Section 1	

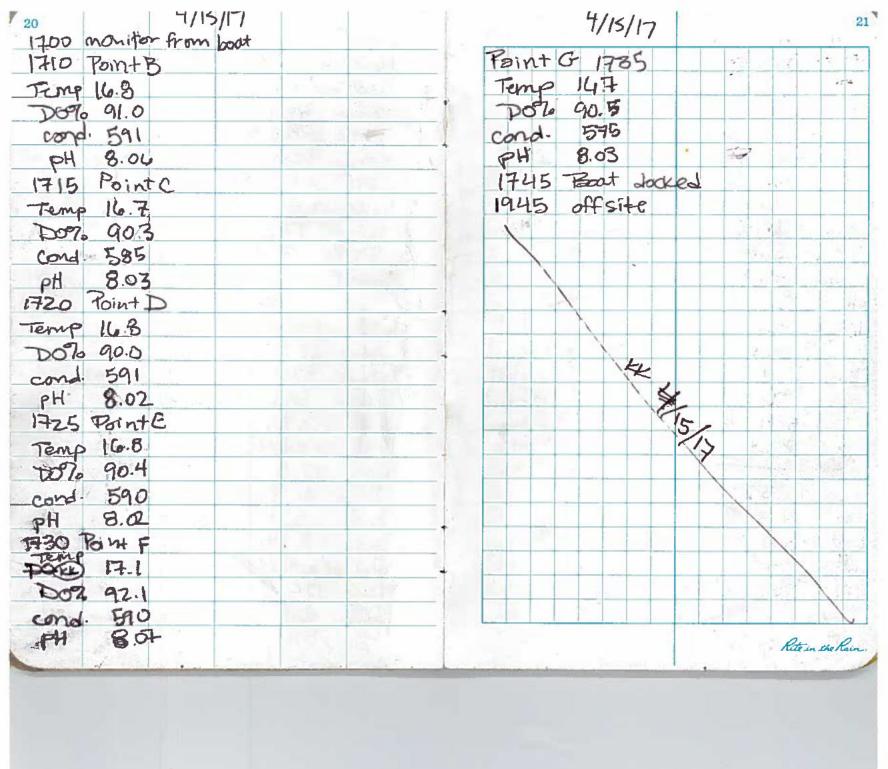
1417 below a	Aflow (ne	nth)	*		
aup 14.3	1				
05, 89.9					
Domy 9.00			5		
Cond. 767					
PH 7.97					
100 feet hort	n of outf	ion			1
Temp 14.1			3		
DO6 84.4					10
Dom 8.94			944		1
Cond. 574			2 5	1	28
PH 7.94			1		
1425					4
Tong 14.2				3	1
Do7. 84.8			1		E
Donale BL9					1
cons. 548			1 /42	Jat	
PH 7.92			1 2		
100 feet south a	f oution		44	by	114
1423 at artion mo				-	
Timp 13.9	9				
00% 82.4				1	
00mg 8.28					
1 656				128	171
PH 7.91					

6 4/14/1	The NE come	erof bay	J Appli	T7/ Meto
Tomporosar			-	and part
D0%	927			**
mal	4.29		8	49.0
cond.	541			CORAN CONTRACT
pH	7.95		PTQ.	
Temp 14.		or No order	1 (1)	
DO2 85				and the state of
DOM 8.				
Cond. 5	64 541			plant!
PH 7.	13	Par I	ALS:	E sunda L
	n of way to	lake		
1438	100ft sout	h of outfl	nv	
Tem H.				The state of the s
DO1. 85	7			
Dayle 8.	76			
comd. 50	1 1		1 113	
pH 7.0	73			E 314
1	st north of	AHFIMAL	-	goil
Toup 14.6	S WILL DI	2011 2010		- Bras
00092.1			- 4	little in
00 mg 9. 12				To the
cmd. 606	-		46.	W Traba
PH 8.00				
- 1"			100	
			10.	
The same of the sa	-	The state of the s	The state of the s	and the second second

emp 14.5		-			-	ماز		ve
102 37.6							7	
0m/Lg.94								
cond. 414					-	5.8	2	
pH 7.99		1_				+ 15	1/2	
Temp 14.4 100 ft. &	noth	of	לעכ	Flo	w		1	-
10 % 8.69						1		
cond. 547						19		T
PH 7.95				1		157		
1503 at ov+6m					4			-
1200014.9 TD686.6			14.			-		
DOMES 65 Cond. 619					100	1		
PH 7.95				2		- NE		
1507 middle of ban	7							
85.9								
8.70								
549							1	
7.94								
							-	

4/14/								
1550	Northe	ast	Cor	ner	of	bee	4	
Temp	144)	
D0%					-			
DomyL	3.75				13			
cond.								-
PH						-		
1600 0	t output						1	
Temp								
Do 7.								
Dongli	8 45							
cond.							1	1
PH	7.97			-			P-	
1630		poi	nt	-				
Temp	14.5				T. C			
DO 7.	89.5		-			in		
Do myl	9.08			1				
cond.	544							×
	7.99						TES.	
1640 at	utflow							
Temp 14.	4 1							-
Do70 88	.5				1			45
DO 74/2 9.					1			
cond. 50	44				ti u			
pH =	7.98							

Rete in the Rain.


Rete in the Rein

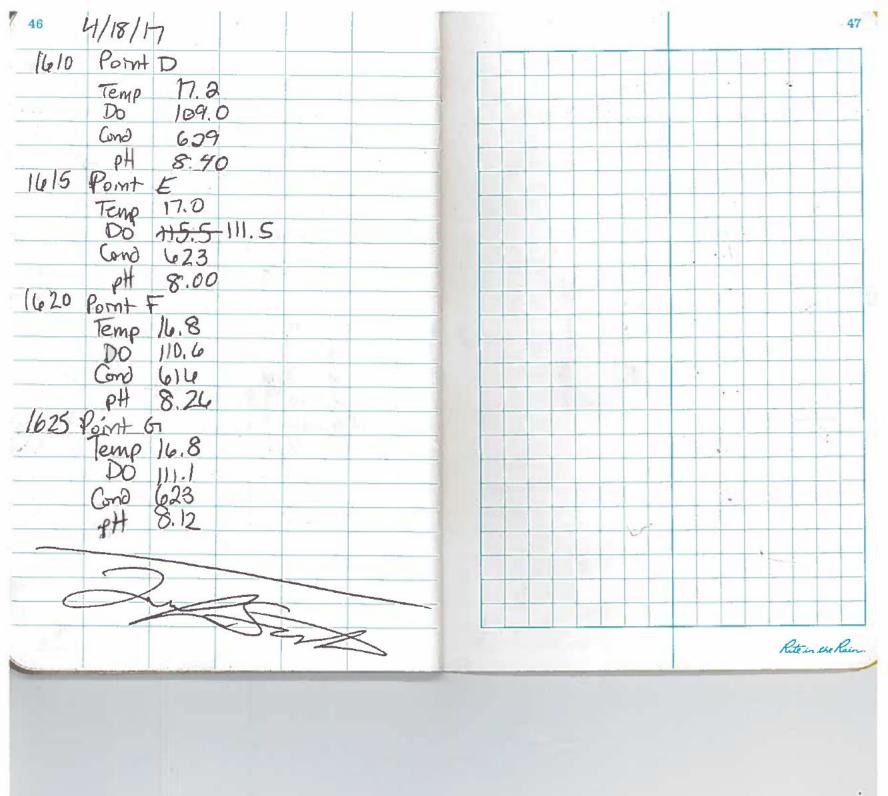
10 4/19 middl	t/17 of Bay V	450	1	
	14.5		Assessed 1	
Dol.	88.3		1 2 10 5 10	LINES A
DOM	L 9.00		a ul	Det 1
Conduc	. 548			and :
PH	7.98		Jaka J	L-87
	Just north of	adflar		***************************************
Temp				igrup-
Do 2.			4-14	
Domyl				
Conduc	. 545			100
	8.05			
	s to Buy 1	210		
Teny	14.4	1 1000		The same of
00%	89.3		1000	The state of
Dong	L 4.10			
	544			
PH	7.99			0 3
	U1720			
Tenip			The state of	THE SE
	907			
Domile				
conduc			Tax S	1
	8.01			
et y le			1 12 1 2	
	4			

4/14/1-	u la		.1 1	1	
N CON	athurest com	erof	buyla	sening	to Earle
Temp			10		
Dogo	88.8	279		-	1
Domy	- 9.02				
Consider	555				
TH			-	late .	
1745	at outflow	v	-		1.
Temp	14.4			21	4.11
D020	87.6				-
Domyll	8.92		1 1	-	
7.7	. 542		1,12		
PH	8.00			121	1000
1800	Boat docke	28	1-6	136	1
1900	off sitc		7.3	0	100
			111	A -	1 5
-01			A Pro-		
					1
		4/k	-		37 27
		Hit	17	n e	
			1		1 28
- 1			- 1 Te	1	500
				121	1
				1.5	*
					0

16 152 Poin	A CRED T	7/15/17	181	1		weather: windy	-	7		
	14.					1420 at outfall				
	84.9		No.	1	15	Tomp 13.0			1	
	583		1 1 1		3	D810 78.0				
200.000	7.95		3515			Cond. 682		-		
1325	Point E	a language		4 Sept 1		PH 8.19	1		14.	
	الما		No.			1430 at attall				10.
The second	35.7		7			Temp 17.9	0.0			
	563		*	1		DO70 787		1	111	
	796	- 41		/ /A	The same	cond. 696	DI.	N. W.		22
1330	PointF	to the same	7-			P4 819				(P)
	16.2		1			1440 at outfall				
	849	5				Temp 18.0		193		170
	584	1	Call Is			10% 79.0		50		
7-27	796	- 3				cond. COS			-	7.15
1335	Point G					PH 8.22			700	
	16.9		4 . 1.			1950 at ortall	- 2			
20	91.5			Transfer of	1,	timp 18.0	13			Tell to
	588		- 2	1	10	76.1		1		
	8.02					cond 718	1			
1400	monitor for	on ortal	plat Por	m		PM 829				2 30
1410	at outfall	366			Ī		4			TA MAG
Terup	179	Page 1			-	1500 monitoring on boa	1	1 3		
Tools	79.6	110	3			Temp 16.5 .				
cond-	672		4元1	100 P	9	DO7. 886				4
PH	8.28	4	2 W. AT		-	Cond: 683 PH 8.04		R	te in I	he Rain

	Sivit C				31-2491		14.00		xtremeli)	31			,		
Temp	14.4			. 44	Jew sea		1600	n	onitor	210	m	ov	Ha	u	plai	Hov	un
	2 89!		1125	PT -					ovtfa	ll		9		-			
Cond							Terry		17.1		-	-					
PH	80	0	-		No. of the last		DOL		84.3						-	1	
1520				100	4-4-	1	cons		591				3/6	-		-	
Fomp	16.5		1000				PH		8.22			3.				19.	
Don;	90.1		- 30	\$7°		ii.	1620	1th	-outfal	e						Ca	1
cond.	584	-					Temp)	17.6				33		100	1	1
PH	7.9	8	511		14		Do	20_	80.7				- 5	*	1		*
1525	Point	E	2312				cond	1.	612							R	1
Temp	16.5				MARIE [1]	30	PH		8.2	6						34	- I
Do?0					* 17	i	1630	at	ortha	0			THE R	15			
cond.	591				16:3		Temp		7.2				- 5	153		3	-
PH	7.98		. 41				DO7.	1	32.0								
1530	Point	F			Water Control		Cons	1	593				1			14	
Temp	16.5				Marie Control		pH		8.25			-	4.1-	- • .	The same		
D07.							11,40	at	wHoll				-	Par.			-
cond.	-						Temp	1	7.5					-			4
PH	7 99			100	1 4		00%	4	31.8			- 15				100	1
1535	Point	0			74 3		tond.	14	599		,.						33
Femp	17.3		1 %														
Trel.	1012°	17.	3.0			3	KU50 0	L	+611							54	T
cond	59	5			12.	1	4-11	1-	11	-	-		- 7	4	1	5.6	121
pH					Maria San San San San San San San San San Sa		Temp DO% Cons	1			+	0	0		-8	0.0	
1	8.0	7		Trans			1000	- 5	30.1 75 3.24				36.0			1	3

4/16/17 (one 593 "/un PH 8.04 500 Ft \$1 8004 1050 Pont Destrance Temp 17.4 °C DO 80.3 % (and 611-45/cm 7.95 1055 "Point D(300 A 5 of autall 004) Temp 17.4°C 00 81.7% Cond 599 - 15/00 7.97 100 "Point E"(pext outfall \$ & 004) Temp 17.4°C DO' 80.2 % and 565 w/ pH 7.96 11 05 Point F (next outfall from Brint E) Temp 17, 4°C Southern most out FUR 00 79,9% Cond. 595 oryan PH 7,96 100 Monitoring from bout Swill and Rob (society from Usfel) Rite in the Rain


30 4/1	7/17 monita	or from	outfall			4/17/17	31
1225	at o	Hall				1315 Point D	
						Temp 17.5	
D07		87.7				D873 13.5	
Cond	luctivity	770				cond. 624	
P 1-1	,	8.14				PH 3.00	1
	at out					1320 Point E	
temp	19.0	9				Temp 17.5	
D0%	83.	3			- 10 T Y	DS70 93.0	
Cond	. 75	5				cond. 624 624	
PH	8.1	3			The same	PH 800	
1245	oct out					1325 Point F	100
Temp	18.5	-				Temp 17.5	1
Dolo	82-7				7-4-1	. Dojo 94.0	
cond	720					cond. (020)	1
PH	8.11						anlı
1300	monitor	from	boot	A Bridge	Taker I	1330 Point G (northern part of lay	by lose)
	Point	В				Tenun 17.6	
Temp.	17.1					Do7. 94.1	
D0%	940			Maria L	1	Cond- 618	
CONF.	Tas		10		flet	PH 8.01	
PH	7.85		1 2 4			1410 muitor from platform	
1310	Point	C				1415 outfall	
Tomp	17.3				1	Temp 18.8 cond. 195	
Arres.	94t				Although T	10% 89.1 pt 8.17	1
cond.	615 8.03	3				Rite	in the Rain.

40 4/11	3/17	4/18/17
	monitoring at 004 from datform - TS	P
	Temo(C) 18.2	1345 Pam
	DO(%) 100.5	Temp
	Cond (45/cm) 713 .	Do
	PH 7.43	Cond
1245	monitoring at 004 from platform - JS	PH
	Temp(0C) 19.0	1320 Pot
	10(10)	Temp ((
1.50	Cond (45/cm) 175	Do !
	PH 7.62	Cond
1300	monitoring from boat	PH -
	Point B	1325 Po
	Temp (C) 16. Le	Temo)
	Do food (4m) (%) 126.5	Grind
	(ond (45/cm) 633	Con
	pH 834	pH -
1305	Point C	1350
	Temp 16.4°C	Ten
	DO 118.2 %	Do
4	DO 118.2 % Cond 614 - w/cm PH 7.86	Cov
	PH 7.86	pt
1310	Point D.	14 00 mor
	Temo 14.5 °C	Tem
	DO: 117.6 %	Do
	(and 612 45/m	
	10111	

171011 1	_
pH 7.50	(4)
1315 Part E	
Temp/6.4°C	
Do 11,69/4	
Cond Cold US/Em	
PH 7,70	
1320 POTH F	
Tom (6,5 °C	
Do 1160 %	
Do Illeile % Cond Colo us/con	
PH 7:77	
1325 Potnta	
Temp 14.4 °C	
Cond 116.6 %	
(Drd Coll us/cm	
PH 7.51	
1350 monitoring from platform at 004	
Temp 17:600 18:600	
Do 195.8%	
Cond 679 us/im	
pH 6.42	
14 00 monitoring from Platform at 004	
Temp (°C) 18.8	
DO (%) & 95.7	
	2
Rete in the K	2 air

Rite in the Rain.

42	4/18/17		
	Cord (91-45/4)		-
	PH 7.71		. 1
1410	monitoring at 004		
•	Temp(C) Bile		
	DO (%) 96.	•	
-	Cond (45/wn) (08)		
	11 7.82	- 192	- 1
1420	monitoring at 004	-	
	Temp(°C) 18.4		
	Da (%) 96.5		
	Cond (45/cm) 693		
	PH 7.57		
1430	monitoring at 004		
	Temp(°C) 19.0	2/4/1-	
- 2	DO(%) 93.7	JEI-1	
	Cond (-45/cm) 686		1
3.5	pH 7.79		24.54
1440	monitoring at 004		
	Temp(c) 18,9		
	Da 101 1 911	2 54	
4	Cond (-us/cm) le 86	.,	
	Cond (-uscan) 686 pH 7.70	• .	
1500	monitoring from low	at	
	tomt B		
	Temp(°C) 16.7		
	.,,		3

APPENDIX D PHOTOGRAPHIC LOG

Photographic Documentation
Client: U.S. EPA Region 5

Prepared by: Tetra Tech, Inc.

Site Name: U.S. Steel Hexavalent Chromium Release TDD Number: S05-0001-1704-201

Dates: April 11 – 18, 2017

Photograph No. 1

Location: Portage, IN

Date: 4/11/2017

Description: View of hexavalent chromium release from Outfall 004 at 14:30 when START arrived on site

on day of release.

Photograph No. 2

Date: 4/11/2017

Description: (East) View of Outfall 004 from the canal at 16:30 on day of release.

Site Name: U.S. Steel Hexavalent Chromium Release

Location: Portage, IN

Photographic Documentation

Prepared by: Tetra Tech, Inc. TDD Number: S05-0001-1704-201

Dates: April 11 – 18, 2017

Photograph No. 3

Date: 4/13/2017

Description: (Southeast). START and ALS Laboratories collecting water samples near Outfall 004.

Photograph No. 4

Date: 4/13/2017

Description: (West). View of

boat used for water

sampling.

Site Name: U.S. Steel Hexavalent Chromium Release

Location: Portage, IN

Photographic Documentation


Prepared by: Tetra Tech, Inc. TDD Number: S05-0001-1704-201

Dates: April 11 – 18, 2017

Photograph No. 5

Date: 4/16/2017

Description: (Southeast) START monitoring water quality outside Outfall 004.

Photograph No. 6

Date: 4/14/2016

Description: (Southwest) View of EPA and START monitoring water quality from Outfall 004.

Site Name: U.S. Steel Hexavalent Chromium Release

Location: Portage, IN

Photographic Documentation

Prepared by: Tetra Tech, Inc. TDD Number: S05-0001-1704-201

Dates: April 11 – 18, 2017

Photograph No. 7

Date: 4/12/2017

Description: (Southeast) START collecting shoreline sediment samples at West Beach.

Photograph No. 8

Date: 4/12/2017

Description: Homogenized sediment sample collected from a National Parks lakefront.

Site Name: U.S. Steel Hexavalent Chromium Release

Location: Portage, IN

Photographic Documentation

Prepared by: Tetra Tech, Inc. TDD Number: S05-0001-1704-201

Dates: April 11 – 18, 2017

Photograph No. 9

Date: 4/12/2017

Description: (North) START preserving beach surface water samples collected at

West Beach.

APPENDIX E ENVIRONMENTALLY PREFERRED PRACTICES

START implemented environmentally preferred practices to maximize sustainability; reduce energy, water use, and toxic air emissions; promote carbon neutrality; and encourage industrial material reuse and recycling. In accordance with contract requirements, U.S. Environmental Protection Agency (EPA) policies, and relevant guidance, START documented project-specific environmentally preferred practices and available metrics in the Environmental Field Practices Checklist, Environmental Office Practices Checklist, and Green Metrics Table (ASTM International 2016; EPA 2012a, 2012b, and 2016).

References:

- ASTM International (ASTM). 2016. "Standard Guide for Greener Cleanups." E2893-16. April 1.
- EPA. 2012a. "Methodology for Understanding and Reducing a Project's Environmental Footprint." Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation. EPA 542-R-12-002. February.
- EPA. 2012b. "U.S. EPA Region 5 Superfund Greener Cleanup Implementation Strategy." March 16.
- EPA. 2016. Memorandum Regarding Consideration of Greener Cleanup Activities in the Superfund Cleanup Process. From Woolford, James, Director, *et. al.* To Regional Superfund National Program Managers and Regional Counsels, Regions 1 10. August 2.

TDD #:	S05-0001-1704-201
Site Name:	U.S. Steel Hexavalent Chromium Spill ER
Site City, State:	Portage, Indiana
Site Project Manager:	Justin Button-Hutchens
EPA OSC:	Andrew Maguire

Comments Section Justify in the comments for each for the category box, not for each subcategory. Section Justify in the comments for each for the category box, not for each subcategory. Section Justify in the comments for each subcategory. Section Justify in the comment subcategory. Section Justify in the comment subcategory. Section Jus	Environmentally Preferre	ed Gene	eral Fie	ld Prac	ctices
Use of Energy Efficient Equipment Computer Equipment (FEMP/Energy Star) Installation of Electric Service Reduce Carbon Emissions from Transportation Use Internet Based Meetings/Conferences Maximize Carpooling Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Waste Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction Materials Printing when Required	마이션 [1] - [2] [2] [2] [2] [2] [2] [2] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	N= Not Used	N/A= Not Applicable	Y = Yes Implemented	Justify in the comments for each BMP field as to why the practice was not used, not applicable, or
Computer Equipment (FEMP/Energy Star)	End	ergy			
Installation of Electric Service Reduce Carbon Emissions from Transportation Use Internet Based Meetings/Conferences Maximize Carpooling Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Properly Inflated Tires Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Water Use of Low Flow Sampling Pumps Waste Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction Materials Printing when Required	Use of Energy Efficient Equipment			- 4	
Reduce Carbon Emissions from Transportation Use Internet Based Meetings/Conferences Maximize Carpooling Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Properly Inflated Tires Water Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Recycling – Other Reuse of Resources Direct Push Boring Materials Materials V A START personnel from the Chicago Office responded X Rental car company X Rental car company X Poligital cameras were used Water Unable to recycle waste due to potential contamination	Computer Equipment (FEMP/Energy Star)			Х	
Use Internet Based Meetings/Conferences Maximize Carpooling Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Local Recycling Programs Use of Rechargeable Batteries X Unable to recycle waste due to potential contamination Plastic Reduction X Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Valuable to recycle waste due to cross contamination Valuable to recycle waste due to cross contamination Valuable to reuse disposable resources due to cross contamination Valuable to reuse disposable resources due to cross contamination Valuable to reuse disposable resources due to cross contamination Valuable to reuse disposable resources due to cross contamination	Installation of Electric Service	,	X		
Maximize Carpooling Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Low Flow Sampling Pumps Waste Use of Rechargeable Batteries Recycling – Other Plastic Reduction Reuse of Resources Direct Push Boring Materials Printing when Required	Reduce Carbon Emissions from Transportation				
Use of Local Labor/Suppliers/Waste Disposal Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction Water Waste Waste Unable to recycle waste due to potential contamination Unable to recycle waste due to corsos contamination Unable to reuse disposable resources due to cross contamination Unable to reuse disposable resources due to cross contamination Materials Printing when Required	Use Internet Based Meetings/Conferences		X		On-site everyday
Facilities (50 mile radius) No idling, except for extreme weather conditions Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction A Chicago Office responded X Did not have alternative fuel equipment or vehicles Rental car company Email Small Files (less than 8MB) X Digital cameras were used Water Unable to recycle waste due to potential contamination Unable to recycle waste due to cross contamination Unable to reuse disposable resources due to cross contamination Valuable to reuse disposable resources due to cross contamination Printing when Required	Maximize Carpooling			X	
Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Low Flow Sampling Pumps Use of Local Recycling Programs Vase Use of Rechargeable Batteries Recycling — Other Plastic Reduction Reuse of Resources Reuse of Resources Direct Push Boring Materials Did not have alternative fuel equipment or vehicles X Rental car company X Digital cameras were used Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination Materials Printing when Required				x	•
Use of Alternative Fuels, if available within 10 miles Properly Inflated Tires Properly Inflated Tires Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Low Flow Sampling Pumps Waste Use of Local Recycling Programs Use of Rechargeable Batteries Recycling — Other Plastic Reduction Plastic Reduction A	No idling, except for extreme weather conditions			X	
Email Small Files (less than 8MB) Reusable Electronic Storage Media or the Cloud Water Use of Low Flow Sampling Pumps X Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction X X X X X X X X X X X X X	Use of Alternative Fuels, if available within 10 miles		х		productive and the second control of the second production of the control of the control of the control of the
Reusable Electronic Storage Media or the Cloud Water Use of Low Flow Sampling Pumps X Waste Use of Local Recycling Programs Use of Rechargeable Batteries X Unable to recycle waste due to potential contamination Use of Rechargeable Batteries X Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination X Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination Direct Push Boring Materials Printing when Required	Properly Inflated Tires			X	Rental car company
Use of Low Flow Sampling Pumps Waste Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction Reuse of Resources Reuse of Resources Direct Push Boring Waste X Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination V Materials Printing when Required	Email Small Files (less than 8MB)			X	
Use of Local Recycling Programs Use of Local Recycling Programs Use of Rechargeable Batteries Recycling – Other Plastic Reduction Reuse of Resources Reuse of Resources Direct Push Boring X Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination Wasterials Printing when Required	Reusable Electronic Storage Media or the Cloud			X	Digital cameras were used
Waste Use of Local Recycling Programs Use of Rechargeable Batteries X Unable to recycle waste due to potential contamination X Unable to recycle waste due to potential contamination X Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination N Reuse of Resources Direct Push Boring Materials Printing when Required	Wa	ater			
Use of Local Recycling Programs Use of Rechargeable Batteries X X Unable to recycle waste due to potential contamination X Recycling – Other X Unable to recycle waste due to potential contamination Unable to recycle waste due to potential contamination Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination Direct Push Boring X Materials Printing when Required	Use of Low Flow Sampling Pumps			X	
Use of Local Recycling Programs Use of Rechargeable Batteries X Unable to recycle waste due to potential contamination X Recycling – Other X Unable to reduce plastic use due to cross contamination Unable to reuse disposable resources due to cross contamination Unable to reuse disposable resources due to cross contamination N Reuse of Resources Direct Push Boring X Materials Printing when Required	V	Vaste		n. 34	
Recycling – Other X	Use of Local Recycling Programs	X			The state of the s
Recycling – Other X	Use of Rechargeable Batteries			X	
Plastic Reduction X to cross contamination Unable to reuse disposable resources due to cross contamination X V CONTAMINATION Naterials Printing when Required	Recycling — Other	X			the rest of the second state of the second
Reuse of Resources Direct Push Boring Materials Printing when Required	Plastic Reduction	X			The state of the s
Direct Push Boring X Materials Printing when Required	Reuse of Resources	х			resources due to cross
Materials Printing when Required			Х		
Printing when Required		orials			
100 CO		eriais			
Donnie-Zinen Etturius	Double-sided Printing			Х	

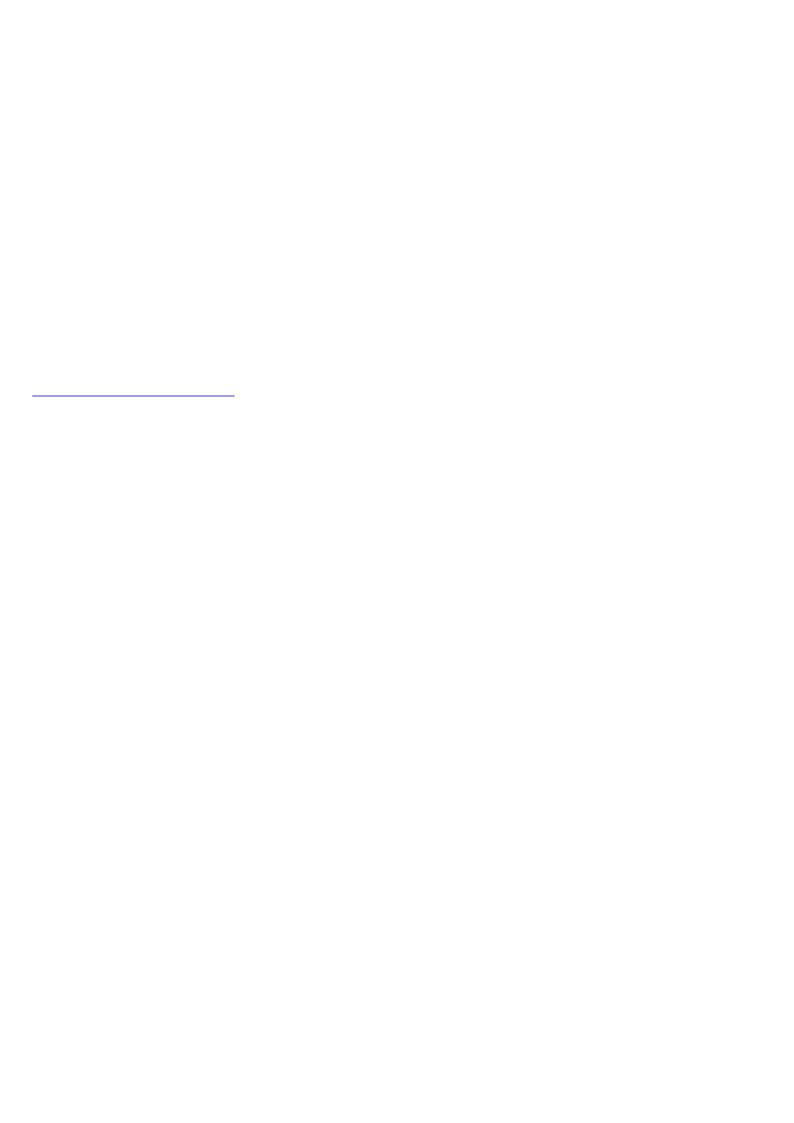
Environmentally Preferre	ed Gene	eral Fie	ld Pra	ctices
If a general category is not applicable, then check N/A for the category box, not for each subcategory.	N= Not Used	N/A= Not Applicable	Y = Yes Implemented	Comments Section Justify in the comments for each BMP field as to why the practice was not used, not applicable, or implemented.
100% post-consumer recycled paper	Х			
Land & Ed	cosyster	ns	0 0	
Minimize Disruption to Natural Vegetation			X	
Use of Non-invasive Investigation Techniques		X		
Environme	ntally Pr	eferred	l	
Green Procurement				
Environmentally Preferred Vendors	Х			
Green Lodging/Hotels		X		
Use of Green Laboratories				

TDD #:	S05-0001-1704-201
Site Name:	US Steel Hexavalent Chromium Spill ER
Site City, State:	Portage, IN
Site Project Manager:	Justin Button-Hutchens
EPA OSC:	Andrew Maguire

Green Metrics								
Metric	Amount	Unit of Measure						
Diesel Fuel Used	=	gallons						
Distance Traveled ¹	2,784.00	Miles						
Unleaded Fuel Used ²	105.86	gallons						
Alternative/E-85 Fuel Used	-	gallons						
Electricity from Coal	=	kW						
Electricity from Natural Gas	=	kW						
Electricity from solar/wind	=	kW						
Electricity from grid/mix	=	kW						
Solid waste reused	=	lbs						
Solid waste recycled	=	lbs						
Water Used	-	gallons						

	Greenhou	se Gas Emissions (Si	te Specific)		
Source	Amount Used	Unit of Measure	Methane (CH4) (Grams) ³	Nitrous Oxide (N ₂ O) (Grams) ³	Carbon Dioxide (CO2) (Kilograms) ³
Gasoline	105.86	X gallons	18.37	45.38	943.17
Diesel		X gallons			
E-85		X gallons			
Electricity Office		X Kilowatts			
Natural Gas		X Therms			
Solid Waste		X lbs			
Other		X Unit of Measure			

Note:


- ¹ Distance traveled based on number of trips between the US Steel Hexavalent Chromium Spill site in Portage, IN, and Tetra Tech's Chicago Office (87 miles) in a large sport utility vehicle, which was required for cargo space. A total of 8 trips were made by 5 Tetra Tech personnel totaling 2,784 miles.
- ² Fuel consumption based on distance traveled in a large sport utility vehicle. An average fuel efficiency of 26.3 miles per gallon was assumed based on 2014 light duty truck fuel efficiency from "Average Fuel Efficiency of U.S. Light Duty Vehicles," U.S. Department of Transportation, Bureau of Statistics Table 4-23 (Accessed online at http://www.rita.dot.gov/bts/sites/rita.dot.gov/bts/files/publications/national_transportation_statistics/html/table_04_23.html on December 9, 2016).
- ³ Methane and nitrous oxide emissions based on emission factors of 0.0066 and 0.0163 grams per mile for EPA Tier 2 light duty gasoline trucks from "Voluntary Reporting of Greenhouse Gases Program, Fuel Emission Coefficients, Table 5" (Accessed online at http://205.254.135.7/oiaf/1605/coefficients.html on December 9, 2016)
- ⁴ Carbon dioxide emissions based on emission factors of 8.91 kilograms carbon dioxide per gallon of gasoline and 10.15 kilograms carbon dioxide per gallon of diesel fuel from "Voluntary Reporting of Greenhouse Gases Program, Fuel Emission Coefficients, Table 2" (Accessed online at http://205.254.135.7/oiaf/1605/coefficients.html on November 14, 2016).

APPENDIX F POLREPS

1		

_				

	_		

ATTACHMENT 1 DATA VALIDATION REPORTS

May 2, 2017

Andrew Maguire
On-Scene Coordinator
U.S. Environmental Protection Agency Region 5
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Subject: Data Validation Reports

U.S. Steel Hexavalent Chrome Release

EPA Contract No. EP-S5-13-01

Technical Direction Document No. S05-0001-1704-201

Document Tracking No. 1688

Dear Mr. Maguire:

Tetra Tech, Inc. (Tetra Tech) is submitting these Data Validation Reports for 393 surface water samples, 56 surface soil samples, and 44 field duplicate samples (30 surface waters and 8 surface soils) collected at the U.S. Steel Hexavalent Chrome Release site. The samples were collected from April 14 through 18, 2017, and were analyzed for total chromium and hexavalent chromium by Pace Analytical Laboratories. The last laboratory data package was received on April 24, 2017.

Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines* (NFG) for Inorganic Superfund Methods Data Review (January 2017).

No results were rejected, but results in some data packages were qualified. The attachment provides the specific details.

If you have any questions regarding these data validation reports, please call me at (312) 201-7756.

Sincerely,

START Chemist

Enclosure

cc: Kevin Scott, Tetra Tech Program Manager

Justin Button-Hutchens, Tetra Tech Project Manager

TDD File

Hang N. Elio III

ATTACHMENT 1

DATA VALIDATION REPORTS FOR PACE ANALYTICAL DATA PACKAGES

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201	
Document Tracking No.	1688A	IDD NO.	303-0001-1704-201	
Data Reviewer (signature and date)	Hang N. Elis III 24 April 2017	Technical Reviewer (signature and date)	Jesaca A. Vickers May 1, 2017	
Laboratory Report No.	1704253	Laboratory	Pace Analytical/Grand Rapids, Michigan	
Analyses	Hexavalent chromium by SW-846 Method 7196A			
Samples and Matrix	79 Surface water samples plus 8 field duplicates			
Field Duplicate Pairs	USS-SW-004B-041417/USS-SW-004B-041417-D, USS-SW-010-A-041417/USS-SW-010-A-041417-D, USS-SW-A001-A-041417/USS-SW-C002-B-041417/USS-SW-C002-B-041417-D, USS-SW-E001-A-041417/USS-SW-E001-A-041417-D, USS-SW-F001-B-041417/USS-SW-F001-B-041417-D, USS-SW-H002-A-041417/USS-SW-H002-A-041417-D, and USS-SW-WB02-041417/USS-SW-WB02-041417-D			
Field Blanks	None			

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but all were qualified due to inadequate sample preservation.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Both coolers were received at the laboratory at temperatures above the standard 4 ± 2 °C; one of them at ambient temperature. Therefore, all results were qualified as estimated, possibly biased low (flagged "UJ' or "J-" as appropriate).
N	Six samples were re-analyzed after expiration of the 24-hour holding time, but less than 48 hours after collection. The results of the original analyses were reported; therefore, no further qualifications were applied.

Instrument Performance Checks:

Within Criteria	Fxceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Fxceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	Several continuing calibration blanks contained hexavalent chromium at concentrations below the reporting limits (RLs); however, no qualifications were applied because the associated results were greater than ten times the equivalent blank value or non-detect.

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
N.I	MS/MSD analyses performed on samples USS-SW-D002-A-041417 and USS-SW-C002-B-041417-D yielded recoveries below the QC
IN	limits. No further qualifications were applied.

EFA REGION 5 START CONTRACT
ion spikes:
Fuse adams / Nation
Exceedance/Notes
ons:
Exceedance/Notes
duplicates:
Exceedance/Notes
rates:
Exceedance/Notes
:
Exceedance/Notes
utions:
Exceedance/Notes

NA

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
N	As discussed under the "holding times" section, six samples were re-analyzed, but the original results were reported. In all cases, hexavalent chromium was detected in the original analyses, but not in the re-analyses. The detected results may be due to suspended material, since the samples were described as "cloudy". If so, they are false positives. No qualifications were applied.

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	Some detected results were below the reporting limit and were correctly qualified by the laboratory as estimated (flagged "J"). These flags were superseded by those for sample preservation.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Reuslts Val. Qualifiers
USS-SW-002A-041417	1704257-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-002B-041417	1704257-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-003A-041417	1704257-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-003B-041417	1704257-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-004A-041417 17042		Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-004B-041417 1704257-		Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-004B-041417-D	1704260-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-005A-041417	1704257-17	Chromium, Hexavalent	0.4	J	0.3	1.0	ug/L	0.4 J-
USS-SW-005B-041417	1704257-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-006A-041417	1704257-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-006B-041417	1704257-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-007-A-041417	1704259-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-007-B-041417	1704259-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-008-A-041417	1704259-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-008-B-041417	1704259-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-009-A-041417	1704259-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-009-B-041417	1704259-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-010-A-041417	1704259-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-010-A-041417-D	1704260-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-010-B-041417	1704259-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-011-A-041417	1704259-09	Chromium, Hexavalent	0.6	J	0.3	1.0	ug/L	0.6 J-
USS-SW-011-B-041417	1704259-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-012-A-041417	1704259-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-012-B-041417	1704259-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A001-A-041417	1704253-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A001-A-041417-D	1704260-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A001-B-041417	1704253-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A002-A-041417	1704253-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A002-B-041417	1704253-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A003-A-041417	1704253-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-A003-B-041417	1704253-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-B001-A-041417	1704253-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-B001-B-041417	1704253-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Reuslts Val. Qualifiers
USS-SW-B002-A-041417	1704253-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-B002-B-041417	1704253-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-B003-A-041417	1704253-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-B003-B-041417	1704253-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-BB02-041417	1704259-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-C001-A-041417	1704253-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-C001-B-041417	1704253-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-C002-A-041417	1704253-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-C002-B-041417	1704253-16	Chromium, Hexavalent	0.4	J	0.3	1.0	ug/L	0.4 J-
USS-SW-C002-B-041417-D	1704260-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-C003-A-041417	1704253-17	Chromium, Hexavalent	2.6		0.3	1.0	ug/L	2.6 J-
USS-SW-C003-B-041417	1704253-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-D001-A-041417	1704253-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-D001-B-041417	1704253-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-D002-A-041417	1704256-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-D002-B-041417	1704256-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-D003-A-041417	1704256-03	Chromium, Hexavalent	15.5		0.3	1.0	ug/L	15.5 J-
USS-SW-D003-B-041417	1704256-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-DB02-041417	1704259-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E001-A-041417	1704256-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E001-A-041417-D	1704260-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E001-B-041417	1704256-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E002-A-041417	1704256-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E002-B-041417	1704256-08	Chromium, Hexavalent	21.5		0.3	1.0	ug/L	21.5 J-
USS-SW-E003-A-041417	1704256-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-E003-B-041417	1704256-10	Chromium, Hexavalent	1.4		0.3	1.0	ug/L	1.4 J-
USS-SW-F001-A-041417	1704256-11	Chromium, Hexavalent	0.4	J	0.3	1.0	ug/L	0.4 J-
USS-SW-F001-B-041417	1704256-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-F001-B-041417-D	1704260-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-F002-A-041417	1704256-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-F002-B-041417	1704256-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-F003-A-041417	1704256-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-F003-B-041417	1704256-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Reuslts Val. Qualifiers
USS-SW-G001-A-041417	1704256-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-G001-B-041417	1704256-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-G002-A-041417	1704256-19	Chromium, Hexavalent	1.2		0.3	1.0	ug/L	1.2 J-
USS-SW-G002-B-041417	1704256-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-G003-A-041417	1704257-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-G003-B-041417	1704257-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H001-A-041417	1704257-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H001-B-041417	1704257-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H002-A-041417	1704257-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H002-A-041417-D	1704260-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H002-B-041417	1704257-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H003-A-041417	1704257-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-H003-B-041417	1704257-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-Intake-A-041417	1704257-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-Intake-B-041417	1704257-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-KB02-041417	1704259-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-OD02-041417	1704259-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-PB02-041417	1704259-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-PL02-041417	1704259-19	Chromium, Hexavalent	5.9		0.3	1.0	ug/L	5.9 J-
USS-SW-WB02-041417	1704259-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ
USS-SW-WB02-041417-D	1704259-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 UJ

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201			
Document Tracking No.	1688B	וטט וויס.	505-0001-1704-201			
Data Reviewer (signature and date)	Hang N. Elis III 24 April 2017	Technical Reviewer (signature and date)	Jeoaca A. Vickers May 1, 2017			
Laboratory Report No.	1704261	Laboratory	Pace Analytical/Grand Rapids, Michigan			
Analyses	Hexavalent chromium by SW-846 Method 7196A					
Samples and Matrix	79 Surface water samples and 8 field duplicates					
Field Duplicate Pairs	USS-SW-004A-041517/USS-SW-004A-041517-D, USS-SW-008B-041517/USS-SW-008B-041517-D, USS-SW-012A-041517/USS-SW-012A-041517-D, USS-SW-B002-A-041517/USS-SW-B002-A-041517-D, USS-SW-C001-B-041517/USS-SW-C001-B-041517-D, USS-SW-D002-A-041517/USS-SW-D002-A-041517-D, USS-SW-D002-A-041517/USS-SW-E002-A-041517-D					
Field Blanks	None					

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Results were neither rejected nor qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	Several continuing calibration blanks contained hexavalent chromium at concentrations below the reporting limits (RLs); however, no qualifications were applied because the associated results were greater than ten times the equivalent blank value or non-detect.

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

	 	•		•	•
Within					Evenedance /Notes
Criteria					Exceedance/Notes
NA					

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Serial dilutions:

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	Hexavalent chromium was not detected in any of the field duplicate samples.

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

With Crite		Exceedance/Notes
NA	4	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes						
NA							

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Y	All detected results were less than their sample reporting limits and were correctly qualified by the laboratory as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID Analy	te	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results	Val. Qualifiers
USS-SW-002-A-041517	1704276-09 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-002-B-041517	1704276-10 Chron	nium, Hexavalent	0.3	J	0.3	1.0	ug/L	0.3	J
USS-SW-003-A-041517	1704276-11 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-003-B-041517	1704276-12 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-004-A-041517	1704276-13 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-004A-041517-D	1704278-03 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-004-B-041517	1704276-14 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-005-A-041517	1704276-15 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-005-B-041517	1704276-16 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-006-A-041517	1704276-17 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-006-B-041517	1704276-18 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-007-A-041517	1704276-19 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-007-B-041517	1704276-20 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-008-A-041517	1704277-01 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-008-B-041517	1704277-02 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-008B-041517-D	1704278-04 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-009-A-041517	1704277-03 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-009-B-041517	1704277-04 Chron	nium, Hexavalent	0.3	J	0.3	1.0	ug/L	0.3	J
USS-SW-010-A-041517	1704277-05 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-010-B-041517	1704277-06 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-011-A-041517	1704277-07 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-011-B-041517	1704277-08 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-012-A-041517	1704277-09 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-012A-041517-D	1704278-02 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-012-B-041517	1704277-10 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-A001-A-041517	1704261-01 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-A001-B-041517	1704261-02 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-A002-A-041517	1704261-03 Chron	nium, Hexavalent	0.5	J	0.3	1.0	ug/L	0.5	J
USS-SW-A002-B-041517	1704261-04 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-A003-A-041517	1704261-05 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-A003-B-041517	1704261-06 Chron	·	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-B001-A-041517	1704261-07 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U
USS-SW-B001-B-041517	1704261-08 Chron	nium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0	U

Sample ID	Lab ID Analyte	Lab Result	Lab Qualifier	DL RL Uni	s Val. Results Val. Qualifiers
USS-SW-B002-A-041517	1704261-09 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B002-A-041517-D	1704278-06 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B002-B-041517	1704261-10 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B003-A-041517	1704261-11 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B003-B-041517	1704261-12 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-BB02-041517	1704277-14 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C001-A-041517	1704261-13 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C001-B-041517	1704261-14 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C001-B-041517-D	1704278-08 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C002-A-041517	1704261-15 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C002-B-041517	1704261-16 Chromium, Hexavale	nt 0.3	J	0.3 1.0 ug/I	0.3 J
USS-SW-C003-A-041517	1704261-17 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C003-B-041517	1704261-18 Chromium, Hexavale	nt 0.5	J	0.3 1.0 ug/I	. 0.5 J
USS-SW-D001-A-041517	1704261-19 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-D001-B-041517	1704261-20 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-D002-A-041517	1704261-21 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-D002-A-041517-D	1704278-07 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-D002-B-041517	1704262-01 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-D003-A-041517	1704262-02 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-D003-B-041517	1704262-03 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-DB02-041517	1704277-11 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-DB02-041517-D	1704278-01 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	. 1.0 U
USS-SW-E001-A-041517	1704262-04 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E001-B-041517	1704262-05 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E002-A-041517	1704262-06 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E002-A-041517-D	1704278-05 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E002-B-041517	1704262-07 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E003-A-041517	1704262-08 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-E003-B-041517	1704262-09 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	. 1.0 U
USS-SW-F001-A-041517	1704262-10 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	. 1.0 U
USS-SW-F001-B-041517	1704262-11 Chromium, Hexavale	nt 1.0	U	0.3 1.0 ug/I	
USS-SW-F002-A-041517	1704262-12 Chromium, Hexavale		U	0.3 1.0 ug/I	
USS-SW-F002-B-041517	1704262-13 Chromium, Hexavale	ent 1.0	U	0.3 1.0 ug/I	1.0 U

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-F003-A-041517	1704262-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-F003-B-041517	1704262-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-A-041517	1704262-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-B-041517	1704262-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G002-A-041517	1704262-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G002-B-041517	1704262-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G003-A-041517	1704262-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G003-B-041517	1704262-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-A-041517	1704276-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-B-041517	1704276-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-A-041517	1704276-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-B-041517	1704276-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-A-041517	1704276-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-B-041517	1704276-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041517	1704276-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-B-041517	1704276-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-KB02-041517	1704277-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-OD02-041517	1704277-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PB02-041517	1704277-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PL02-041517	1704277-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-WB02-041517	1704277-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	\$05-0001-1704-201	
Document Tracking No.	1688C	IDD NO.	303-0001-1704-201	
Data Reviewer (signature and date)	25 April 2017	Technical Reviewer (signature and date)	Jeoaca A. Vickers May 1, 2017	
Laboratory Report No.	1704279	Laboratory	Pace Analytical/Grand Rapids, Michigan	
Analyses	Hexavalent chromium by SW-846 Method 7196A			
Samples and Matrix	79 Surface water samples and 5 field duplicate samples			
	USS-SW-002-A-041617/USS-SW-002-A-041617-D, USS-SW-005B-041617/USS-SW-005B-041617-D,			
Field Duplicate Pairs	USS-SW-B002-B-041617/USS-SW-B002-B-041617-D, USS-SW-D002-A-041617/USS-SW-D002-A-041617-D, and USS-SW-PB02-041617/USS-SW-PB02-041617-D			
Field Blanks	None			

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No result were rejected, but a few were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	Several continuing calibration blanks contained hexavalent chromium at concentrations below the reporting limits (RLs); however, no qualifications were applied because the associated results were non-detect.

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

	0		•		 ,
Withir	1				Evenedance /Notes
Criteria	a				Exceedance/Notes
NA					

MS/MSD:

Within Criteria	Exceedance/Notes
N	The analyses on sample USS-SW-003-B-041617 yielded recoveries of 106 and 71 percent, versus QAPP limits of 75 to 125 percent. The average recovery was within limits; therefore, no qualifications were applied. The analyses performed on sample USS-SW-010-B-041617 yielded recoveries of 64 and 61 percent, and those on sample USS-SW-011-A-041617 yielded recoveries of 68 and 25 percent. Therefore, the non-detect results for these two parent samples were qualified as estimated, possibly biased low (flagged "UJ"). The analyses on samples USS-SW-003-B-041617 and USS-SW-011-A-01617 yielded excessive relative percent differences. The unspiked results from those two samples were nondetected, so no further qualifications were applied.

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Serial dilutions:

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	Hexavalent chromium was not detected in any of the field duplicate samples.

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

With Crite		Exceedance/Notes
NA	4	

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All results were non-detect.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-002-A-041617	1704281-09	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-002-A-041617-D	1704282-22	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-002-B-041617	1704281-10	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003-A-041617	1704281-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003-B-041617	1704281-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-004-A-041617	1704281-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-004-B-041617	1704281-14	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-005-A-041617	1704281-15	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-005-B-041617	1704281-16	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-005B-041617-D	1704282-18	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-006-A-041617	1704281-17	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-006-B-041617	1704281-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-007-A-041617	1704281-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-007-B-041617		,	1.0	U			ug/L	1.0 U
USS-SW-008-A-041617	1704282-01	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-008-B-041617	1704282-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-009-A-041617	1704282-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-009-B-041617	1704282-04	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-010-A-041617	1704282-05	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-010-B-041617	1704282-06	Chromium, Hexavalent	1.0	U			ug/L	1.0 UJ
USS-SW-011-A-041617	1704282-07	Chromium, Hexavalent	1.0	U			ug/L	1.0 UJ
USS-SW-011-B-041617	1704282-08	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-012-A-041617		,	1.0	U			ug/L	1.0 U
USS-SW-012-B-041617		,	1.0	U			ug/L	1.0 U
USS-SW-A001-A-041617		Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-A001-B-041617	1704279-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A002-A-041617	1704279-03	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-A002-B-041617	1704279-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A003-A-041617	1704279-05	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-A003-B-041617		Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-B001-A-041617		,	1.0	U			ug/L	1.0 U
USS-SW-B001-B-041617		,	1.0	U			ug/L	1.0 U
USS-SW-B002-A-041617	1704279-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Sample ID	Lab ID Analyte	Lab Resul	t Lab Qualifier	DL RL Uni	s Val. Results Val. Qualifiers
USS-SW-B002-B-041617	1704279-10 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B002-B-041617-D	1704282-20 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B003-A-041617	1704279-11 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-B003-B-041617	1704279-12 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-BB02-041617	1704282-14 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C001-A-041617	1704279-13 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-C001-B-041617	1704279-14 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-C002-A-041617	1704279-15 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-C002-B-041617	1704279-16 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-C003-A-041617	1704279-17 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-C003-B-041617	1704279-18 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D001-A-041617	1704279-19 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D001-B-041617	1704279-20 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D002-A-041617	1704279-21 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D002-A-041617-D	1704282-21 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D002-B-041617	1704280-01 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D003-A-041617	1704280-02 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-D003-B-041617	1704280-03 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-DB02-041617	1704282-11 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-E001-A-041617	1704280-04 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-E001-B-041617	1704280-05 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-E002-A-041617	1704280-06 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-E002-B-041617	1704280-07 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-E003-A-041617	1704280-08 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-E003-B-041617	1704280-09 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-F001-A-041617	1704280-10 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-F001-B-041617	1704280-11 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-F002-A-041617	1704280-12 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	L 1.0 U
USS-SW-F002-B-041617	1704280-13 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-F003-A-041617	1704280-14 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-F003-B-041617	1704280-15 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-G001-A-041617	1704280-16 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U
USS-SW-G001-B-041617	1704280-17 Chromium, Hex	avalent 1.0	U	0.3 1.0 ug/I	1.0 U

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-G002-A-041617	1704280-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G002-B-041617	1704280-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G003-A-041617	1704280-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G003-B-041617	1704280-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-A-041617	1704281-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-B-041617	1704281-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-A-041617	1704281-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-B-041617	1704281-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-A-041617	1704281-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-B-041617	1704281-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041617	1704281-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-B-041617	1704281-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-KB02-041617	1704282-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-OD02-041617	1704282-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PB02-041617	1704282-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PB02-041617-D	1704282-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PL02-041617	1704282-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-WB02-041617	1704282-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	_	ΓDD No.	S05-0001-1704-201	
Document Tracking No.	1688D	IDD No.		303-0001-1704-201	
Data Reviewer (signature and date)	Hang N. Elis III		Fechnical Reviewer (signature and date)	Jesaca A. Vickers May 1, 2017	
Laboratory Report No.	1704295	L	Laboratory	Pace Analytical/Grand Rapids, Michigan	
Analyses	Hexavalent chromium by SW-846 Method 7196A				
Samples and Matrix	79 Surface water samples and 4 field duplicates				
Field Duplicate Pairs	USS-SW-003A-041717/USS-SW-003A-041717-D, USS-SW-H002-A-041717/USS-SW-H002-A-041717-D, USS-SW-Intake-A-041717/USS-SW-Intake-A-041717-D, and USS-SW-WB02-041717/USS-SW-WB02-041717-D				
Field Blanks	None				

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No data were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Y	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Fxceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Y	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	Several continuing calibration blanks contained hexavalent chromium at concentrations below the reporting limits (RLs); however, no qualifications were applied because the associated results were non-detect.

Field blanks:

Within Criteria	Fxceedance/Notes
NA	

Interference Check Sam	ples (ICS) (ICP	metals onl	y):
------------------------	-----------	--------	------------	-----

Within	Exceedance/Notes
Criteria	
NA	
System monitoring compounds (surro	gates and labeled compounds):
Within	Exceedance/Notes
Criteria	Exceedince/Notes
NA	
MS/MSD:	
Within	
Criteria	Exceedance/Notes
Υ	
L	
Post digestion spikes:	
Within	E Annua
Criteria	Exceedance/Notes
NA	
0. 4.1 49 45	
Serial dilutions:	
Within	Exceedance/Notes
Criteria	
NA	
Laboratory duplicates:	
Within	Farer device (Notes
Criteria	Exceedance/Notes

Criteria NA

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	Hexavalent chromium was not detected in any of the field duplicate samples.

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Fxceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Y	The one detected result was less than the sample reporting limit and was correctly qualified by the laboratory as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
NA	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-002A-041717	1704297-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-002B-041717	1704297-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-003A-041717	1704297-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003A-041717-D	1704298-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-003B-041717	1704297-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-004A-041717	1704297-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-004B-041717	1704297-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-005A-041717	1704297-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-005B-041717	1704297-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-006A-041717	1704297-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-006B-041717	1704297-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-007-A-041717	1704297-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-007-B-041717	1704297-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-008-A-041717	1704298-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-008-B-041717	1704298-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-009-A-041717	1704298-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-009-B-041717	1704298-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-010-A-041717	1704298-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-010-B-041717	1704298-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-011-A-041717	1704298-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-011-B-041717	1704298-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-012-A-041717	1704298-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-012-B-041717	1704298-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A001-A-041717	1704295-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A001-B-041717	1704295-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A002-A-041717	1704295-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A002-B-041717	1704295-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-A003-A-041717	1704295-05	Chromium, Hexavalent	0.4	J			ug/L	0.4 J
USS-SW-A003-B-041717	1704295-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B001-A-041717	1704295-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B001-B-041717	1704295-08	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-B002-A-041717	1704295-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B002-B-041717	1704295-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-B003-A-041717	1704295-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B003-B-041717	1704295-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-BB02-041717	1704298-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C001-A-041717	1704295-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C001-B-041717	1704295-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C002-A-041717	1704295-15	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-C002-B-041717	1704295-16	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-C003-A-041717	1704295-17	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-C003-B-041717	1704295-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D001-A-041717	1704295-19	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-D001-B-041717	1704295-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D002-A-041717	1704295-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D002-B-041717	1704296-01	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-D003-A-041717	1704296-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D003-B-041717	1704296-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-DB02-041717	1704298-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E001-A-041717		Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E001-B-041717	1704296-05	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E002-A-041717	1704296-06	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E002-B-041717	1704296-07	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E003-A-041717	1704296-08	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E003-B-041717	1704296-09	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F001-A-041717	1704296-10	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F001-B-041717	1704296-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F002-A-041717		Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F002-B-041717	1704296-13	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F003-A-041717	1704296-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-F003-B-041717	1704296-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-A-041717	1704296-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-B-041717	1704296-17	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-G002-A-041717	1704296-18	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-G002-B-041717	1704296-19	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-G003-A-041717	1704296-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-G003-B-041717	1704296-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-A-041717	1704297-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-B-041717	1704297-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-A-041717	1704297-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-A-041717-D	1704298-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-B-041717	1704297-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-A-041717	1704297-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-B-041717	1704297-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041717	1704297-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041717-D	1704297-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-B-041717	1704297-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-KB02-041717	1704298-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-OD02-041717	1704298-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PB02-041717	1704298-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PL02-041717	1704298-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-WB02-041717	1704298-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-WB02-041717-D	1704298-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201					
Document Tracking No.	1688E	IDD NO.	303-0001-1704-201					
Data Reviewer (signature and date)	Hang N. Ellis III 25 April 2017	Technical Reviewer (signature and date)	Jesaca a Vickers May 1, 2017					
Laboratory Report No.	1704318	Laboratory	Pace Analytical/Grand Rapids, Michigan					
Analyses	Hexavalent chromium by SW-846 Method 7196A							
Samples and Matrix	77 Surface water samples and 5 field duplicates							
Field Duplicate Pairs	USS-SW-003-A-041817/USS-SW-003-A-041817, USS-SW-PL02-041817/USS-SW-PL02-041817, USS-SW-B002-A-041817/USS-SW-B002-A-041817, USS-SW-C002-A-041817/USS-SW-C002-A-041817, and USS-SW-Intake-A-041817/USS-SW-Intake-A-041817							
Field Blanks	None							

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes				
Υ					
Instrument Performance Checks:					

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

6					
Within	Fyeodomes/Notes				
Criteria	Exceedance/Notes				
Υ					

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	Several continuing calibration blanks and two of the method blanks contained hexavalent chromium at concentrations below the reporting limits (RLs); however, no qualifications were applied because the associated results were greater than ten times the equivalent blank values or non-detect.

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

•,•••	
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within Criteria	Fxceedance/Notes
NA	

Serial dilutions:

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

	· · · · · · · · · · · · · · · · · · ·	
Within	Exceedance/Notes	
Criteria	Exceedance/ Notes	
Υ	Hexavalent chromium was not detected in any of the field duplicate samples.	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Y	

Sample dilutions:

Within Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

	·
Within	Fyeodomes/Netes
Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Y	All detected results were less than their sample reporting limits and were correctly qualified by the laboratory as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Analyte	Lab result	Lab Qualfiier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-002A-041817	1704320-09	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-002B-041817	1704320-10	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003A-041817	1704320-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003A-041817-D	1704320-21	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-003B-041817	1704320-12	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-004A-041817	1704320-13	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-004B-041817	1704320-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-005A-041817	1704320-15	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-005B-041817	1704320-16	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-006A-041817	1704320-17	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-006B-041817	1704320-18	Chromium, Hexavalent	0.6	J			ug/L	0.6 J
USS-SW-007-A-041817	1704320-19	Chromium, Hexavalent	0.9	J	0.3	1.0	ug/L	0.9 J
USS-SW-007-B-041817	1704320-20	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-008-A-041817	1704321-01	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-008-B-041817	1704321-02	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-009-A-041817	1704321-03	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-009-B-041817	1704321-04	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-010-A-041817		Chromium, Hexavalent		U	0.3	1.0	ug/L	1.0 U
USS-SW-010-B-041817	1704321-06	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-011-A-041817	1704321-07	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-011-B-041817	1704321-08	Chromium, Hexavalent	0.6	J			ug/L	0.6 J
USS-SW-012-A-041817	1704321-09	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-012-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-A001-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-A001-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-A002-A-041817	1704318-03	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-A002-B-041817	1704318-04	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-A003-A-041817		Chromium, Hexavalent		U	0.3	1.0	ug/L	1.0 U
USS-SW-A003-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-B001-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-B001-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-B002-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-B002-A-041817-D	1704321-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Sample ID	Lab ID	Analyte	Lab result	Lab Qualfiier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-B002-B-041817	1704318-10	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B003-A-041817	1704318-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-B003-B-041817	1704318-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-BB02-041817	1704321-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C001-A-041817	1704318-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C001-B-041817	1704318-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C002-A-041817	1704318-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C002-A-041817-D	1704321-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C002-B-041817	1704318-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C003-A-041817	1704318-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-C003-B-041817	1704318-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D001-A-041817	1704318-19	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-D001-B-041817	1704318-20	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-D002-A-041817	1704318-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D002-B-041817	1704319-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D003-A-041817	1704319-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-D003-B-041817	1704319-03	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E001-A-041817	1704319-04	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E001-B-041817	1704319-05	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E002-A-041817	1704319-06	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-E002-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-E003-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-E003-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-F001-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-F001-B-041817	1704319-11	Chromium, Hexavalent	1.0	U			ug/L	1.0 U
USS-SW-F002-A-041817	1704319-12	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-F002-B-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-F003-A-041817		Chromium, Hexavalent		U			ug/L	1.0 U
USS-SW-F003-B-041817	1704319-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-A-041817	1704319-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G001-B-041817	1704319-17	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G002-A-041817	1704319-18	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G002-B-041817	1704319-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Sample ID	Lab ID	Analyte	Lab result	Lab Qualfiier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-G003-A-041817	1704319-20	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-G003-B-041817	1704319-21	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-A-041817	1704320-01	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H001-B-041817	1704320-02	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-A-041817	1704320-03	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H002-B-041817	1704320-04	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-A-041817	1704320-05	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-H003-B-041817	1704320-06	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041817	1704320-07	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-A-041817-D	1704321-19	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-Intake-B-041817	1704320-08	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-OD02-041817	1704321-14	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PB02-041817	1704321-11	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PL02-041817	1704321-15	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-PL02-041817-D	1704321-16	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U
USS-SW-WB02-041817	1704321-13	Chromium, Hexavalent	1.0	U	0.3	1.0	ug/L	1.0 U

Site Name	U.S. Steel Hexavalent Chrome Release		TDD No.	S05-0001-1704-201			
Document Tracking No.	1688F		וטט ווט.				
Data Reviewer (signature and date) 25 April 2017 Laboratory Report No. 50168923			Technical Reviewer (signature and date)	Jeogea A. Vickers May 1, 2017			
			Laboratory	Pace Analytical/Indianapolis, Indiana			
Analyses	Hexavalent chromium by SW-846 Method 7196A and total chromium by SW-846 Method 6010B						
Samples and Matrix	14 Surface soil samples and 2 field duplicates						
Field Duplicate Pairs	USS-SS-PL01-041417/USS-SS-PL01-041417-D and USS-SS-PL02-041417/USS-SS-PL02-041417-D						
Field Blanks	None	•					

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but a few were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within	Exceedance/Notes
Criteria	Exceedance/Notes
Υ	

Serial dilutions:

Within Criteria	Exceedance/Notes
Υ	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
Υ	

Field duplicates:

Within Criteria	Exceedance/Notes
N	Sample USS-SS-PL02-041417-D yielded about 3 times the total chromium concentration of its primary sample, indicating heterogeneity of distribution of the metal in the soil. Therefore, the field duplicate results for total chromium in that pair were qualified as estimated (flagged "J").

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Y	

Sample dilutions:

Within Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Fxceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All total chromium results were above RLs and all hexavalent chromium results were non-detect.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Soil Results Pace Analytical Report No. 50168923

Sample ID	Lab ID	Analyte		Lab Qualifier				Val. Results Val. Qualifiers
USS-SS-BB01-041417	50168923007		2.9				mg/kg	2.9
USS-SS-BB01-041417		Chromium, Hexavalent		U	0.64		mg/kg	2.0 U
USS-SS-BB02-041417	50168923008		4.2				mg/kg	4.2
USS-SS-BB02-041417	50168923008	Chromium, Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-DB01-041417	50168923001	Chromium	4.3		0.42	0.84	mg/kg	4.3
USS-SS-DB01-041417	50168923001	Chromium, Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-DB02-041417	50168923002	Chromium	5.2		0.42	0.84	mg/kg	5.2
USS-SS-DB02-041417	50168923002	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-KB01-041417	50168923003	Chromium	1.5		0.42	0.84	mg/kg	1.5
USS-SS-KB01-041417	50168923003	Chromium, Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-KB02-041417	50168923004	Chromium	4.8		0.43	0.85	mg/kg	4.8
USS-SS-KB02-041417	50168923004	Chromium, Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-OD01-041417	50168923011	Chromium	2.1		0.43	0.86	mg/kg	2.1
USS-SS-OD01-041417	50168923011	Chromium, Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-OD02-041417	50168923012	Chromium	2.8		0.45	0.89	mg/kg	2.8
USS-SS-OD02-041417	50168923012	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PB01-041417	50168923005	Chromium	6.7		0.42	0.84	mg/kg	6.7
USS-SS-PB01-041417	50168923005	Chromium, Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-PB02-041417	50168923006	Chromium	2.2		0.42	0.85	mg/kg	2.2
USS-SS-PB02-041417	50168923006	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PL01-041417	50168923013	Chromium	2.2		0.46	0.91	mg/kg	2.2
USS-SS-PL01-041417	50168923013	Chromium, Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-PL01-041417-D	50168923015	Chromium	2.9		0.42	0.84	mg/kg	2.9
USS-SS-PL01-041417-D	50168923015	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PL02-041417	50168923014	Chromium	3.5		0.42	0.85	mg/kg	3.5 J
USS-SS-PL02-041417	50168923014	Chromium, Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-PL02-041417-D	50168923016	Chromium	10.0		0.42	0.84	mg/kg	10.0 J
USS-SS-PL02-041417-D	50168923016	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-WB01-041417	50168923009	Chromium	3.5		0.46	0.92	mg/kg	3.5
USS-SS-WB01-041417	50168923009	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-WB02-041417	50168923010	Chromium	4.6				mg/kg	4.6
USS-SS-WB02-041417	50168923010	Chromium, Hexavalent		U	0.65	2.0	mg/kg	2.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201	
Document Tracking No.	Tracking No. 1688G		303-0001-1704-201	
Data Reviewer (signature and date)	Hang N. Elis III 25 April 2017	Technical Reviewer (signature and date)	Jesaca A. Vickers May 1, 2017	
Laboratory Report No.	50168924	Laboratory	Pace Analytical/Indianapolis, Indiana	
Analyses	Total chromium by EPA Method 200.7			
Samples and Matrix	72 Surface water samples and 7 field duplicates			
Field Duplicate Pairs	USS-SW-A001-A-041417/USS-SW-A001-A-0		17-D, USS-SW-010-A-041417/USS-SW-010-A-041417-D, 11417-D, USS-SW-C002-B-041417/USS-SW-C002-B-041417-D, 1417-D, USS-SW-F001-B-041417/USS-SW-F001-B-041417-D, and 11417-D	
Field Blanks	None			

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Four samples were received at the laboratory unpreserved (pH = 7). These samples (as well as the rest of the samples) were analyzed for total chromium only on the day after collection; therefore, no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

	EIA REGION S START CONTRACT
Field blank	s:
Within Criteria	Exceedance/Notes
NA	
Interferen	ce Check Samples (ICS) (ICP metals only):
Within Criteria	Exceedance/Notes
Υ	
	onitoring compounds (surrogates and labeled compounds):
Within Criteria	Exceedance/Notes
NA	
MS/MSD:	
Within Criteria	Exceedance/Notes
Υ	
	tion spikes:
Within	Exceedance/Notes
Criteria	
Υ	
Serial dilut	ions:
Within Criteria	Exceedance/Notes

Υ

EPA REGION 5 START CONTRACT
duplicates:
Exceedance/Notes
cates:
Exceedance/Notes
::
Exceedance/Notes
utions:
Exceedance/Notes
on and reanalysis:
·
Exceedance/Notes
umn confirmation (GC and HPLC analyses only):
Exceedance/Notes

NA

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All detected results were less than their reporting limits. The laboratory correctly qualified these as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within	Exceedance/Notes
Criteria	Exceedance/ Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168924

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val Qualifiers
USS-SW-002-A-041417	50168924051	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-002-B-041417	50168924052	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-003-A-041417	50168924053	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-003-B-041417	50168924054	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-004-A-041417	50168924055	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-004-B-041417	50168924056	Chromium		U	0.58	10.0	ug/L	10 U
USS-SW-004-B-041417-D	50168924079	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-005-A-041417	50168924057	Chromium	0.84	J	0.58	10.0	ug/L	0.84 J
USS-SW-005-B-041417	50168924058	Chromium		U	0.58	10.0	ug/L	10 U
USS-SW-006-A-041417	50168924059	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-006-B-041417	50168924060	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-007-A-041417	50168924061	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-007-B-041417	50168924062	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-008-A-041417	50168924063	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-008-B-041417	50168924064	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-009-A-041417	50168924065	Chromium		U	0.58	10.0	ug/L	10 U
USS-SW-009-B-041417	50168924066	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-010-A-041417	50168924067	Chromium	0.86	J	0.58	10.0	ug/L	0.86 J
USS-SW-010-A-041417-D	50168924078	Chromium	0.98	J	0.58	10.0	ug/L	0.98 J
USS-SW-010-B-041417	50168924068	Chromium	0.94	J	0.58	10.0	ug/L	0.94 J
USS-SW-011-A-041417	50168924069	Chromium	0.69	J	0.58	10.0	ug/L	0.69 J
USS-SW-011-B-041417	50168924070	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-012-A-041417	50168924071	Chromium	0.99	J	0.58	10.0	ug/L	0.99 J
USS-SW-012-B-041417	50168924072	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-A001-A-041417	50168924001	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-A001-A-041417-D	50168924073	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-A001-B-041417	50168924002	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-A002-A-041417	50168924003	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-A002-B-041417	50168924004	Chromium	1.1	J	0.58	10.0	ug/L	1.1 J
USS-SW-A003-A-041417	50168924005	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-A003-B-041417	50168924006	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-B001-A-041417	50168924007	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-B001-B-041417	50168924008	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-B002-A-041417	50168924009	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-B002-B-041417	50168924010	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-B003-A-041417	50168924011	Chromium	1.9	J		10.0		1.9 J
USS-SW-B003-B-041417	50168924012			J		10.0		1.4 J
USS-SW-C001-A-041417	50168924013			J		10.0		1.7 J
USS-SW-C001-B-041417	50168924014	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168924

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val Qualifiers
USS-SW-C002-A-041417	50168924015	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-C002-B-041417	50168924016	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-C002-B-041417-D	50168924074	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-C003-A-041417	50168924017	Chromium	4.3	J	0.58	10.0	ug/L	4.3 J
USS-SW-C003-B-041417	50168924018	Chromium	5.7	J	0.58	10.0	ug/L	5.7 J
USS-SW-D001-A-041417	50168924019	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-D001-B-041417	50168924020	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-D002-A-041417	50168924021	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-D002-B-041417	50168924022	Chromium	0.91	J	0.58	10.0	ug/L	0.91 J
USS-SW-D003-A-041417	50168924023	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-D003-B-041417	50168924024	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-E001-A-041417	50168924025	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-E001-A-041417-D	50168924075	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-E001-B-041417	50168924026	Chromium	0.78	J	0.58	10.0	ug/L	0.78 J
USS-SW-E002-A-041417	50168924027	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-E002-B-041417	50168924028	Chromium	0.90	J	0.58	10.0	ug/L	0.9 J
USS-SW-E003-A-041417	50168924029	Chromium	2.7	J	0.58	10.0	ug/L	2.7 J
USS-SW-E003-B-041417	50168924030	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-F001-A-041417	50168924031	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-F001-B-041417	50168924032	Chromium	0.68	J	0.58	10.0	ug/L	0.68 J
USS-SW-F001-B-041417-D	50168924076	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-F002-A-041417	50168924033	Chromium	1.0	J	0.58	10.0	ug/L	1.0 J
USS-SW-F002-B-041417	50168924034	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-F003-A-041417	50168924035	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-F003-B-041417	50168924036	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-G001-A-041417	50168924037	Chromium	0.60	J	0.58	10.0	ug/L	0.60 J
USS-SW-G001-B-041417	50168924038	Chromium	0.87	J	0.58	10.0	ug/L	0.87 J
USS-SW-G002-A-041417	50168924039	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-G002-B-041417	50168924040	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-G003-A-041417	50168924041	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-G003-B-041417	50168924042	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-H001-A-041417	50168924043	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-H001-B-041417	50168924044	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-H002-A-041417	50168924045	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-H002-A-041417-D	50168924077	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-H002-B-041417	50168924046	Chromium	2.3	J		10.0		2.3 J
USS-SW-H003-A-041417	50168924047			J		10.0		2.7 J
USS-SW-H003-B-041417	50168924048			J		10.0		1.4 J
USS-SW-Intake-A-041417	50168924049	Chromium		U	0.58	10.0	ug/L	10 U

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168924

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results	Val Qualifiers
USS-SW-Intake-B-041417	50168924050	Chromium	1.1	J	0.58	10.0	ug/L	1.1	J

Site Name	U.S. Steel Hexavalent Chrome Release		TDD No.	S05-0001-1704-201			
Document Tracking No.	1688H		וטט ווט.	303-0001-1704-201			
Data Reviewer (signature and date)	Hang N. Ellis III 25 April 2017		Technical Reviewer (signature and date)	Jesaca a. Vickers May 1, 2017			
Laboratory Report No.	50168934		Laboratory	Pace Analytical/Indianapolis, Indiana			
Analyses	Hexavalent chromium by SW-846 Method 7196A and total chromium by SW-846 Method 6010B						
Samples and Matrix	14 Surface soil samples and 2 field duplicates						
Field Duplicate Pairs	USS-SS-OD01-041517/USS-SS-OD01-04151	.7-C	and USS-SS-PB02-0415	517/USS-SS-PB02-041517-D			
Field Blanks	None						

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Results were neither rejected nor qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within	Exceedance/Notes
Criteria	Exceedance/Notes
Υ	

Serial dilutions:

Within Criteria	Exceedance/Notes
Υ	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
Υ	

Field duplicates:	
Within Criteria	Exceedance/Notes
Υ	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Y	
Sample dilutions: Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and	HPLC analyses only):
Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within	Evenedance/Notes
Criteria	Exceedance/Notes
NA	

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All total chromium results were above the RL, while all hexavalent chromium results were non-detect.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Soil Reslts Pace Analytical Report No. 50168934

Sample ID	Lab Sample	Analyte		Lab Result	Lab Qualifier		RL		Val. Results Val. Qualifiers
USS-SS-BB01-041517	50168934007			4.1		0.44	0.88	mg/kg	4.1
USS-SS-BB01-041517	50168934007		<u>Hexavalent</u>		U	0.65	2.0	mg/kg	2.0 U
USS-SS-BB02-041517	50168934008			3.6		0.45	0.90	mg/kg	3.6
USS-SS-BB02-041517	50168934008		<u>Hexavalent</u>		U	0.66	2.0	mg/kg	2.0 U
USS-SS-DB01-041517	50168934001			3.4		0.44	0.88	mg/kg	3.4
USS-SS-DB01-041517	50168934001		Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-DB02-041517	50168934002			3.5		0.48	0.96	mg/kg	3.5
USS-SS-DB02-041517	50168934002	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-KB01-041517	50168934003	Chromium		2.8		0.43	0.85	mg/kg	2.8
USS-SS-KB01-041517	50168934003	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-KB02-041517	50168934004	Chromium		2.9		0.45	0.89	mg/kg	2.9
USS-SS-KB02-041517	50168934004		Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-OD01-041517	50168934011	Chromium		5.9		0.44	0.88	mg/kg	5.9
USS-SS-OD01-041517	50168934011	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-OD01-041517-D	50168934015	Chromium		3.2		0.48	0.97	mg/kg	3.2
USS-SS-OD01-041517-D	50168934015	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-OD02-041517	50168934012	Chromium		1.4		0.46	0.92	mg/kg	1.4
USS-SS-OD02-041517	50168934012	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PB01-041517	50168934005	Chromium		2.8		0.46	0.91	mg/kg	2.8
USS-SS-PB01-041517	50168934005	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PB02-041517	50168934006	Chromium		2.9		0.44	0.88	mg/kg	2.9
USS-SS-PB02-041517	50168934006	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-PB02-041517-D	50168934016	Chromium		3.9		0.43	0.86	mg/kg	3.9
USS-SS-PB02-041517-D	50168934016	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-PL01-041517	50168934013	Chromium		4.6		0.49	0.98	mg/kg	4.6
USS-SS-PL01-041517	50168934013	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PL02-041517	50168934014	Chromium		5.6		0.43	0.86	mg/kg	5.6
USS-SS-PL02-041517	50168934014	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-WB01-041517	50168934009	Chromium		3.9		0.42	0.84	mg/kg	3.9
USS-SS-WB01-041517	50168934009		Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-WB02-041517	50168934010			3.0		0.45	0.90	mg/kg	3.0
USS-SS-WB02-041517	50168934010		<u>Hexavalent</u>		U	0.64	2.0	mg/kg	2.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201			
Document Tracking No.	16881	או טעו וייס.	303-0001-1704-201			
Data Reviewer (signature and date)	Hang N. Elis III 26 April 2017	Technical Reviewer (signature and date)	Jesaca a Vickers May 1, 2017			
Laboratory Report No.	50168935	Laboratory	Pace Analytical/Indianapolis, Indiana			
Analyses	Total chromium by EPA Method 200.7					
Samples and Matrix	71 Surface water samples					
Field Duplicate Pairs	None					
Field Blanks	None					

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No samples were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Two samples were received at the laboratory unpreserved (pH = 7). The samples were analyzed for total chromium on the day after collection; therefore, no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within	Exceedance/Notes
Criteria	Exceedance/Notes
Υ	

Serial dilutions:

Within Criteria	Exceedance/Notes
Υ	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
Υ	

	EFA REGION 5 START CONTRACT
Field duplicates:	
Within Criteria	Exceedance/Notes
NA	
1.00 // 000	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Υ	
Sample dilutions:	
Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and H	PLC analyses only):
Within	
Criteria	Exceedance/Notes
NA	
Internal Standards:	
Within	
Criteria	Exceedance/Notes

NA

Target analyte identification:

Within Criteria	Fxceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	Detected chromium concentrations less than the sample reporting limit were correctly qualified as estimated (flagged "J") by the laboratory.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Surface Water Results Pace Analytical Report No. 50168935

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Dilution	Units	Val. Results Val. Qualifiers
USS-SW-002A-041517	50168935051	Chromium	1.3	J	0.58	10.0	1	ug/L	1.3 J
USS-SW-002B-041517	50168935052	Chromium	1.2	J	0.58	10.0	1	ug/L	1.2 J
USS-SW-003A-041517	50168935053	Chromium	1.8	J	0.58	10.0	1	ug/L	1.8 J
USS-SW-003B-041517	50168935054	Chromium	0.96	J	0.58	10.0	1	ug/L	0.96 J
USS-SW-004A-041517	50168935055	Chromium	2.2	J	0.58	10.0	1	ug/L	2.2 J
USS-SW-004B-041517	50168935056	Chromium	1.3	J	0.58	10.0	1	ug/L	1.3 J
USS-SW-005A-041517	50168935057	Chromium	1.7	J	0.58	10.0	1	ug/L	1.7 J
USS-SW-005B-041517	50168935058	Chromium	0.67	J	0.58	10.0	1	ug/L	0.67 J
USS-SW-006A-041517	50168935059	Chromium	0.82	J	0.58	10.0	1	ug/L	0.82 J
USS-SW-006B-041517	50168935060	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J
USS-SW-007-A-041517	50168935061	Chromium	1.4	J	0.58	10.0	1	ug/L	1.4 J
USS-SW-007-B-041517	50168935062	Chromium	1.2	J	0.58	10.0	1	ug/L	1.2 J
USS-SW-008-A-041517	50168935063	Chromium		U	0.58	10.0	1	ug/L	10 U
USS-SW-008-B-041517	50168935064	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J
USS-SW-009-A-041517	50168935065	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J
USS-SW-009-B-041517	50168935066	Chromium	1.1	J	0.58	10.0	1	ug/L	1.1 J
USS-SW-010-A-041517	50168935067	Chromium	1.7	J	0.58	10.0	1	ug/L	1.7 J
USS-SW-010-B-041517	50168935068	Chromium	1.2	J	0.58	10.0	1	ug/L	1.2 J
USS-SW-011-A-041517	50168935069	Chromium	1.5	J	0.58	10.0	1	ug/L	1.5 J
USS-SW-011-B-041517	50168935070	Chromium	1.2	J	0.58	10.0	1	ug/L	1.2 J
USS-SW-012-A-041517	50168935071	Chromium	1.3	J	0.58	10.0	1	ug/L	1.3 J
USS-SW-012-B-041517	50168935072	Chromium	0.97	J	0.58	10.0	1	ug/L	0.97 J
USS-SW-A001-A-041517	50168935001	Chromium	1.5	J	0.58	10.0	1	ug/L	1.5 J
USS-SW-A001-B-041517	50168935002	Chromium	2.4	J	0.58	10.0	1	ug/L	2.4 J
USS-SW-A002-A-041517	50168935003	Chromium	2.2	J	0.58	10.0	1	ug/L	2.2 J
USS-SW-A002-B-041517	50168935004	Chromium	2.2	J	0.58	10.0	1	ug/L	2.2 J
USS-SW-A003-A-041517	50168935005	Chromium	1.8	J	0.58	10.0	1	ug/L	1.8 J
USS-SW-A003-B-041517	50168935006	Chromium	1.4	J	0.58	10.0	1	ug/L	1.4 J
USS-SW-B001-A-041517	50168935007	Chromium	2.3	J	0.58	10.0	1	ug/L	2.3 J
USS-SW-B001-B-041517	50168935008			J		10.0		ug/L	2.8 J
USS-SW-B002-A-041517	50168935009	Chromium	1.5	J	0.58	10.0	1	ug/L	1.5 J
USS-SW-B002-B-041517	50168935010	Chromium	2.7	J	0.58	10.0	1	ug/L	2.7 J
USS-SW-B003-A-041517	50168935011	Chromium	2.3	J	0.58	10.0	1	ug/L	2.3 J
USS-SW-B003-B-041517	50168935012	Chromium	6.4	J	0.58	10.0	1	ug/L	6.4 J
USS-SW-C001-A-041517	50168935013			J	0.58	10.0	1	ug/L	1.9 J
USS-SW-C001-B-041517	50168935014	Chromium	2.4	J	0.58	10.0	1	ug/L	2.4 J
USS-SW-C002-A-041517	50168935015			J	0.58	10.0	1	ug/L	1.9 J
USS-SW-C002-B-041517	50168935016	Chromium	1.4	J	0.58	10.0	1	ug/L	1.4 J
USS-SW-C003-A-041517	50168935017	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J

U.S. Steel Hexavalent Chrome Surface Water Results Pace Analytical Report No. 50168935

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Dilution	Units	Val. Results Val. Qualifiers
USS-SW-C003-B-041517	50168935018	Chromium	2.2	J	0.58	10.0	1	ug/L	2.2 J
USS-SW-D001-A-041517	50168935019	Chromium	2.0	J	0.58	10.0	1	ug/L	2.0 J
USS-SW-D001-B-041517	50168935020	Chromium	1.6	J	0.58	10.0	1	ug/L	1.6 J
USS-SW-D002-A-041517	50168935021	Chromium	1.8	J	0.58	10.0	1	ug/L	1.8 J
USS-SW-D002-B-041517	50168935022	Chromium	2.3	J	0.58	10.0	1	ug/L	2.3 J
USS-SW-D003-A-041517	50168935023	Chromium	8.6	J	0.58	10.0	1	ug/L	8.6 J
USS-SW-D003-B-041517	50168935024	Chromium	10.3		0.58	10.0	1	ug/L	10.3
USS-SW-E001-A-041517	50168935025	Chromium	2.5	J	0.58	10.0	1	ug/L	2.5 J
USS-SW-E001-B-041517	50168935026	Chromium	2.0	J	0.58	10.0	1	ug/L	2.0 J
USS-SW-E002-A-041517	50168935027	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J
USS-SW-E002-B-041517	50168935028	Chromium	2.3	J	0.58	10.0	1	ug/L	2.3 J
USS-SW-E003-A-041517	50168935029	Chromium	2.4	J	0.58	10.0	1	ug/L	2.4 J
USS-SW-E003-B-041517	50168935030	Chromium	1.8	J	0.58	10.0	1	ug/L	1.8 J
USS-SW-F001-A-041517	50168935031	Chromium	1.6	J	0.58	10.0	1	ug/L	1.6 J
USS-SW-F001-B-041517	50168935032	Chromium	2.5	J	0.58	10.0	1	ug/L	2.5 J
USS-SW-F002-A-041517	50168935033	Chromium	2.2	J	0.58	10.0	1	ug/L	2.2 J
USS-SW-F002-B-041517	50168935034	Chromium	1.6	J	0.58	10.0	1	ug/L	1.6 J
USS-SW-F003-A-041517	50168935035	Chromium	2.2	J		10.0		ug/L	2.2 J
USS-SW-G001-A-041517	50168935037	Chromium	1.8	J	0.58	10.0	1	ug/L	1.8 J
USS-SW-G001-B-041517	50168935038	Chromium	2.0	J	0.58	10.0	1	ug/L	2.0 J
USS-SW-G002-A-041517	50168935039	Chromium	1.6	J	0.58	10.0	1	ug/L	1.6 J
USS-SW-G002-B-041517	50168935040	Chromium	1.5	J	0.58	10.0	1	ug/L	1.5 J
USS-SW-G003-A-041517	50168935041	Chromium	2.6	J	0.58	10.0	1	ug/L	2.6 J
USS-SW-G003-B-041517	50168935042	Chromium	3.2	J	0.58	10.0	1	ug/L	3.2 J
USS-SW-H001-A-041517	50168935043	Chromium	1.9	J	0.58	10.0	1	ug/L	1.9 J
USS-SW-H001-B-041517	50168935044	Chromium	1.6	J	0.58	10.0	1	ug/L	1.6 J
USS-SW-H002-A-041517	50168935045			J	0.58	10.0	1	ug/L	1.7 J
USS-SW-H002-B-041517	50168935046	Chromium	2.6	J	0.58	10.0	1	ug/L	2.6 J
USS-SW-H003-A-041517	50168935047	Chromium	2.4	J	0.58	10.0	1	ug/L	2.4 J
USS-SW-H003-B-041517	50168935048	Chromium	2.9	J	0.58	10.0	1	ug/L	2.9 J
USS-SW-Intake-A-041517	50168935049	Chromium	0.90	J	0.58	10.0	1	ug/L	0.90 J
USS-SW-Intake-B-041517	50168935050	Chromium	1.3	J	0.58	10.0	1	ug/L	1.3 J

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	SOE 0001 1704 201					
Document Tracking No.	1688J		S05-0001-1704-201					
Data Reviewer (signature and date)	Hang N. Elis III 26 April 2017	Technical Reviewer (signature and date)	Jeoaca a Vickers May 2, 2017					
Laboratory Report No.	50168936	Laboratory	Pace Analytical/Indianapolis, Indiana					
Analyses	Hexavalent chromium by SW-846 Method	7196A and total chromium	n by SW-846 Method 6010B					
Samples and Matrix	14 Surface soil samples and 2 field duplicat	es						
Field Duplicate Pairs	USS-SS-BB01-041617/USS-SS-BB01-041617	-D and USS-SS-WB02-041	517/USS-SS-WB02-041617-D					
Field Blanks	None							

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but one was qualified as detailed below.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
N	MS/MSD analyses were performed on sample USS-SS-DB01-041617. The first hexavalent chromium MS/MSD analyses, performed using a spike concentration about 5 times the unspiked concentration, yielded recoveries of 70 and 70 percent, while the second set, performed using a spike more than 100 times the unspiked concentration yielded recoveries of 101 and 89 percent. These results indicate matrix interference at concentrations near those found in the unspiked sample; therefore, the result for the parent sample was qualified as estimated, possibly biased low (flagged "J-").

Post digestion spikes:

Within Criteria	Exceedance/Notes
Υ	

Serial dilutions:

Within Criteria	Exceedance/Notes
Y	

Within Criteria	Exceedance/Notes
Υ	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within	Exceedance/Notes
Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Withii Criteri	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All total chromium results were above the RL, while all hexavalent chromium results except one were non-detect.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Soil Results Pace Analytical Report No. 50168936

Sample ID	Lab ID	Analyte		Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SS-BB01-041617	50168936007	Chromium		6.6		0.47	0.95	mg/kg	6.6
USS-SS-BB01-041617	50168936007	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-BB01-041617-D	50168936016	Chromium		3.4		0.46	0.92	mg/kg	3.4
USS-SS-BB01-041617-D	50168936016	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-BB02-041617	50168936008	Chromium		5.1		0.48	0.97	mg/kg	5.1
USS-SS-BB02-041617	50168936008	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-DB01-041617	50168936001	Chromium		5.4		0.49	0.98	mg/kg	5.4
USS-SS-DB01-041617	50168936001	Chromium,	Hexavalent	7.3		0.64	2.0	mg/kg	7.3 J-
USS-SS-DB02-041617	50168936002	Chromium		4.3		0.45	0.91	mg/kg	4.3
USS-SS-DB02-041617	50168936002	Chromium,	Hexavalent		U	0.63	1.9	mg/kg	1.9 U
USS-SS-KB01-041617	50168936003	Chromium		2.0		0.48	0.95	mg/kg	2.0
USS-SS-KB01-041617	50168936003	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-KB02-041617	50168936004	Chromium		1.4		0.44	0.88	mg/kg	1.4
USS-SS-KB02-041617	50168936004	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-OD01-041617	50168936011	Chromium		2.2		0.45	0.90	mg/kg	2.2
USS-SS-OD01-041617	50168936011	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-OD02-041617	50168936012	Chromium		3.4		0.48	0.96	mg/kg	3.4
USS-SS-OD02-041617	50168936012	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-PB01-041617	50168936005	Chromium		3.9		0.50	1.0	mg/kg	3.9
USS-SS-PB01-041617	50168936005	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-PB02-041617	50168936006	Chromium		1.9		0.45	0.90	mg/kg	1.9
USS-SS-PB02-041617	50168936006	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-PL01-041617	50168936013	Chromium		3.5		0.44	0.87	mg/kg	3.5
USS-SS-PL01-041617	50168936013	Chromium,	Hexavalent		U	0.66	2.0	mg/kg	2.0 U
USS-SS-PL02-041617	50168936014	Chromium		2.4		0.44	0.87	mg/kg	2.4
USS-SS-PL02-041617	50168936014	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U
USS-SS-WB01-041617	50168936009	Chromium		3.8		0.48	0.97	mg/kg	3.8
USS-SS-WB01-041617	50168936009	Chromium,	Hexavalent		U	0.63	1.9	mg/kg	1.9 U
USS-SS-WB02-041617	50168936010	Chromium		1.6		0.44	0.88	mg/kg	1.6
USS-SS-WB02-041617	50168936010	Chromium,	Hexavalent		U	0.65	2.0	mg/kg	2.0 U
USS-SS-WB02-041617-D	50168936015			3.3		0.44	0.87	mg/kg	3.3
USS-SS-WB02-041617-D	50168936015	Chromium,	Hexavalent		U	0.64	2.0	mg/kg	2.0 U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201
Document Tracking No. 1688K		IDD NO.	303-0001-1704-201
Data Reviewer (signature and date)	Hang N. Ellis III 26 April 2017	Technical Reviewer (signature and date)	Jesaca A. Vickers May 2, 2017
Laboratory Report No.	50168937	Laboratory	Pace Analytical/Indianapolis, Indiana
Analyses	Total chromium by EPA Method 200.7		
Samples and Matrix	73 Surface water samples		
Field Duplicate Pairs	None		
Field Blanks	None		

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but a number were qualified for laboratory blank contamination. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	Thirteen samples were received at the laboratory insufficiently preserved (pH = 3). All samples were analyzed for total chromium the day after collection; therefore, no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	One of the method blanks (Lab No. 1764225) yielded a low concentration (below reporting limit) of chromium. The results for USS-SW-A001-A-041617, USS-SW-A001-B-041617, USS-SW-A002-B-041617, USS-SW-A003-B-041617, USS-SW-B001-A-041617, USS-SW-B001-B-041617, USS-SW-B002-A-041617, USS-SW-B002-B-041617, USS-SW-B003-B-041617, USS-SW-C001-B-041617, USS-SW-C002-A-041617, USS-SW-C002-B-041617, USS-SW-C003-A-041617, USS-SW-C003-B-041617, USS-SW-D001-B-041617, USS-SW-D001-B-041617, and USS-SW-D002-A-041617 (which represents all samples associated with this blank) were raised to the reporting limit and qualified as laboratory artifacts (flagged "U").

Field blanks:			
Within	Everadores /Netes		
Criteria	Exceedance/Notes		
NA			
Interference C	heck Samples (ICS) (ICP metals only):		
Within	Exceedance/Notes		
Criteria	Exceedance/ Notes		
Y			
	oring compounds (surrogates and labeled compounds):		
Within	Exceedance/Notes		
Criteria	Exceedance/Notes		
NA			
MS/MSD:			
Within	Exceedance/Notes		
Criteria	Exceedance/ Notes		
Y			
Post digestion	spikes:		
Within	Exceedance/Notes		
Criteria	Exceedance/Notes		
Υ			
Serial dilutions	::		
Within	Exceedance/Notes		
Critoria	Exceedance/ Notes		

Laboratory duplicates: Within Exceedance/Notes Criteria NA Field duplicates: Within **Exceedance/Notes** Criteria NA LCSs/LCSDs: Within **Exceedance/Notes** Criteria Υ Sample dilutions: Within **Exceedance/Notes** Criteria NA **Re-extraction and reanalysis:** Within **Exceedance/Notes** Criteria NA Second column confirmation (GC and HPLC analyses only): Within **Exceedance/Notes** Criteria

NA

Internal Standards:

Within Criteria	Exceedance/Notes
NA	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All detected results were less than their reporting limits. The laboratory correctly qualified these as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168937

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-002A-041617	50168937051	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-002B-041617	50168937052	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-003A-041617	50168937053	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-003B-041617	50168937054	Chromium		U	0.58	10.0	ug/L	10 U
USS-SW-004A-041617	50168937055	Chromium	0.97	J	0.58	10.0	ug/L	0.97 J
USS-SW-004B-041617	50168937056	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-005A-041617	50168937057	Chromium	0.98	J	0.58	10.0	ug/L	0.98 J
USS-SW-005B-041617	50168937058	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-006A-041617	50168937059	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-006B-041617	50168937060	Chromium	1.0	J	0.58	10.0	ug/L	1.0 J
USS-SW-007-A-041617	50168937061	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-007-B-041617	50168937062	Chromium	1.1	J	0.58	10.0	ug/L	1.1 J
USS-SW-008-A-041617	50168937064	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-008-B-041617	50168937065	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-009-A-041617	50168937066	Chromium	0.96	J	0.58	10.0	ug/L	0.96 J
USS-SW-009-B-041617	50168937067	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-010-A-041617	50168937068	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-010-B-041617	50168937069	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-011-A-041617	50168937070	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-011-B-041617	50168937071			J	0.58	10.0	ug/L	1.2 J
USS-SW-012-A-041617	50168937072	Chromium	1.1	J	0.58	10.0	ug/L	1.1 J
USS-SW-012-B-041617	50168937073			J	0.58	10.0	ug/L	1.1 J
USS-SW-A001-A-041617	50168937001	Chromium	2.1	J	0.58	10.0	ug/L	10 U
USS-SW-A001-B-041617	50168937002			J	0.58	10.0	ug/L	10 U
USS-SW-A002-A-041617	50168937003			J		10.0	-	10 U
USS-SW-A002-B-041617	50168937004			J		10.0		10 U
USS-SW-A003-A-041617	50168937005			J		10.0		10 U
USS-SW-A003-B-041617	50168937006			J		10.0	-	10 U
USS-SW-B001-A-041617	50168937007			J		10.0	-	10 U
USS-SW-B001-B-041617	50168937008			J		10.0	_	10 U
USS-SW-B002-A-041617	50168937009			J		10.0		10 U
USS-SW-B002-B-041617	50168937010			J		10.0	_	10 U
USS-SW-B003-A-041617	50168937011			J		10.0	_	2.0 J
USS-SW-B003-B-041617	50168937012			J		10.0	_	10 U
USS-SW-C001-A-041617	50168937013			J		10.0	•	10 U
USS-SW-C001-B-041617	50168937014			J		10.0	_	10 U
USS-SW-C002-A-041617	50168937015	Chromium	1.4	J	0.58	10.0	ug/L	10 U

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168937

Sample ID	Lab ID	Analyte	Lab Result	Lab Qualifier	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-C002-B-041617	50168937016	Chromium	1.6	J	0.58	10.0	ug/L	10 U
USS-SW-C003-A-041617	50168937017	Chromium	1.3	J	0.58	10.0	ug/L	10 U
USS-SW-C003-B-041617	50168937018	Chromium	1.9	J	0.58	10.0	ug/L	10 U
USS-SW-D001-A-041617	50168937019	Chromium	1.1	J	0.58	10.0	ug/L	10 U
USS-SW-D001-B-041617	50168937020	Chromium	1.8	J	0.58	10.0	ug/L	10 U
USS-SW-D002-A-041617	50168937021			J	0.58	10.0	ug/L	10 U
USS-SW-D002-B-041617	50168937022	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-D003-A-041617	50168937023	Chromium	4.2	J	0.58	10.0	ug/L	4.2 J
USS-SW-D003-B-041617	50168937024	Chromium	3.7	J	0.58	10.0	ug/L	3.7 J
USS-SW-E001-A-041617	50168937025	Chromium	1.1	J	0.58	10.0	ug/L	1.1 J
USS-SW-E001-B-041617	50168937026	Chromium	2.8	J	0.58	10.0	ug/L	2.8 J
USS-SW-E002-A-041617	50168937027	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-E002-B-041617	50168937028	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-E003-A-041617	50168937029	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-E003-B-041617	50168937030	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-F001-A-041617	50168937031	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-F001-B-041617	50168937032	Chromium	1.6	J	0.58	10.0	ug/L	1.6 J
USS-SW-F002-A-041617	50168937033	Chromium	2.9	J	0.58	10.0	ug/L	2.9 J
USS-SW-F002-B-041617	50168937034	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-F003-A-041617	50168937035	Chromium	2.4	J	0.58	10.0	ug/L	2.4 J
USS-SW-F003-B-041617	50168937036	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-G001-A-041617	50168937037	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-G001-B-041617	50168937038	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-G002-A-041617	50168937039	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-G002-B-041617	50168937040	Chromium	2.6	J	0.58	10.0	ug/L	2.6 J
USS-SW-G003-A-041617	50168937041	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-G003-B-041617	50168937042	Chromium	3.4	J	0.58	10.0	ug/L	3.4 J
USS-SW-H001-A-041617	50168937043	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-H001-B-041617	50168937044	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-H002-A-041617	50168937045	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-H002-B-041617	50168937046	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-H003-A-041617	50168937047	Chromium	2.5	J	0.58	10.0	ug/L	2.5 J
USS-SW-H003-B-041617	50168937048	Chromium	2.8	J	0.58	10.0	ug/L	2.8 J
USS-SW-Intake-A-041617	50168937049	Chromium	1.0	J	0.58	10.0	ug/L	1.0 J
USS-SW-Intake-B-041617	50168937050	Chromium	0.78	J	0.58	10.0	ug/L	0.78 J

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201				
Document Tracking No.	1688L	וטט ווסט.	303-0001-1704-201				
Data Reviewer (signature and date)	Hang N. Elis III 26 April 2017	Technical Reviewer (signature and date)	Jesaca A. Vickers May 2, 2017				
Laboratory Report No.	50168998	Laboratory	Pace Analytical/Indianapolis, Indiana				
Analyses	Total chromium by EPA Method 200.7						
Samples and Matrix	ix 72 Surface water samples						
Field Duplicate Pairs	None						
Field Blanks	None						

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	All samples were received at the laboratory unpreserved (pH = 6 to 7). The samples were analyzed for total chromium on the day after collection; therefore, no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

interreterice effects samples (165) (161	metals only).
Within Criteria	Exceedance/Notes
Υ	
System monitoring compounds (surro	ogates and labeled compounds):
Within Criteria	Exceedance/Notes
NA	
MS/MSD:	
Within Criteria	Exceedance/Notes
Y	
Post digestion spikes:	
Within Criteria	Exceedance/Notes
Y	
Serial dilutions:	
Within Criteria	Exceedance/Notes
Y	
Laboratory duplicates:	
Within Criteria	Exceedance/Notes
NA	

EFA REGION 5 START CONTRACT	
Field duplicates:	
Within Criteria	Exceedance/Notes
NA	
1.00 // 000	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Υ	
Sample dilutions:	
Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and H	PLC analyses only):
Within	
Criteria	Exceedance/Notes
NA	
Internal Standards:	
Within	
Criteria	Exceedance/Notes

NA

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All detected results were less than their reporting limits. The laboratory correctly qualified these as estimated (flagged "J").

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

oyotem pe	······································
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hexavalent Chrome Water Results Pace Analytical Report No. 50168998

Sample ID	Lab ID	Analyte	Lab results	Lab Qualifiers	DL	R:	Units	Val. Results Val. Qualifiers
USS-SW-002A-041717	50168998051	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-002B-041717	50168998052	Chromium	0.66	J	0.47	10.0	ug/L	0.66 J
USS-SW-003A-041717	50168998053	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-003B-041717	50168998054	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-004A-041717	50168998055	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-004B-041717	50168998056	Chromium	0.57	J	0.47	10.0	ug/L	0.57 J
USS-SW-005A-041717	50168998057	Chromium	0.84	J	0.47	10.0	ug/L	0.84 J
USS-SW-005B-041717	50168998058	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-006A-041717	50168998059	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-006B-041717	50168998060	Chromium	0.76	J	0.47	10.0	ug/L	0.76 J
USS-SW-007-A-041717	50168998061	Chromium	0.60	J	0.47	10.0	ug/L	0.6 J
USS-SW-007-B-041717	50168998062	Chromium	1.0	J	0.47	10.0	ug/L	1.0 J
USS-SW-008-A-041717	50168998063	Chromium	0.74	J	0.47	10.0	ug/L	0.74 J
USS-SW-008-B-041717	50168998064	Chromium	0.92	J	0.47	10.0	ug/L	0.92 J
USS-SW-009-A-041717	50168998065	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-009-B-041717	50168998066	Chromium	0.87	J	0.47	10.0	ug/L	0.87 J
USS-SW-010-A-041717	50168998067	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-010-B-041717	50168998068	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-011-A-041717	50168998069	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-011-B-041717	50168998070	Chromium	0.49	J	0.47	10.0	ug/L	0.49 J
USS-SW-012-A-041717	50168998071	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-012-B-041717	50168998072	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-A001-A-041717	50168998001	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-A001-B-041717	50168998002	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-A002-A-041717	50168998003	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-A002-B-041717	50168998004	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-A003-A-041717	50168998005	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-A003-B-041717	50168998006	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-B001-A-041717	50168998007	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-B001-B-041717	50168998008	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-B002-A-041717	50168998009	Chromium	0.91	J	0.47	10.0	ug/L	0.91 J
USS-SW-B002-B-041717	50168998010	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-B003-A-041717	50168998011	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-B003-B-041717	50168998012	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-C001-A-041717	50168998013	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-C001-B-041717	50168998014	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-C002-A-041717	50168998015	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J

Sample ID	Lab ID	Analyte	Lab results	Lab Qualifiers	DL	R:	Units	Val. Results Val. Qualifiers
USS-SW-C002-B-041717	50168998016	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-C003-A-041717	50168998017	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-C003-B-041717	50168998018	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-D001-A-041717	50168998019	Chromium	1.4	J	0.58	10.0	ug/L	1.4 J
USS-SW-D001-B-041717	50168998020	Chromium	1.2	J	0.58	10.0	ug/L	1.2 J
USS-SW-D002-A-041717	50168998021	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-D002-B-041717	50168998022	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-D003-A-041717	50168998023	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-D003-B-041717	50168998024	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-E001-A-041717	50168998025	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-E001-B-041717	50168998026	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-E002-A-041717	50168998027	Chromium	0.73	J	0.47	10.0	ug/L	0.73 J
USS-SW-E002-B-041717	50168998028	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-E003-A-041717	50168998029	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-E003-B-041717	50168998030	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-F001-A-041717	50168998031	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-F001-B-041717	50168998032	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-F002-A-041717	50168998033	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-F002-B-041717	50168998034	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-F003-A-041717	50168998035	Chromium	0.60	J	0.47	10.0	ug/L	0.60 J
USS-SW-F003-B-041717	50168998036	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-G001-A-041717	50168998037	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-G001-B-041717	50168998038	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-G002-A-041717	50168998039	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-G002-B-041717	50168998040	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-G003-A-041717	50168998041	Chromium		U		10.0		10 U
USS-SW-G003-B-041717	50168998042	Chromium		U		10.0		10 U
USS-SW-H001-A-041717	50168998043	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-H001-B-041717	50168998044	Chromium	0.57	J	0.47	10.0	ug/L	0.57 J
USS-SW-H002-A-041717	50168998045	Chromium		U	0.47	10.0	ug/L	10 U
USS-SW-H002-B-041717	50168998046	Chromium	0.76	J		10.0		0.76 J
USS-SW-H003-A-041717	50168998047	Chromium	0.52	J	0.47	10.0	ug/L	0.52 J
USS-SW-H003-B-041717	50168998048	Chromium	0.59	J		10.0	_	0.59 J
USS-SW-Intake-A-041717	50168998049		0.76	J		10.0	_	0.76 J
USS-SW-Intake-B-041717	50168998050	Chromium		U	0.47	10.0	ug/L	10 U

Site Name	U.S. Steel Hexavalent Chrome Release		TDD No.	S05-0001-1704-201
Document Tracking No.	1688M		TOD NO.	303-0001-1704-201
Data Reviewer (signature and date)	Hang N. Ellis III 24 April 2017		Technical Reviewer (signature and date)	Jesaca A. Vickers May 2, 2017
Laboratory Report No.	50168999		Laboratory	Pace Analytical/Indianapolis, Indiana
Analyses	Hexavalent chromium by SW-846 Method 7		96A and total chromium	by SW-846 Method 6010B
Samples and Matrix	14 Surface soil samples and 2 field duplicates			
Field Duplicate Pairs	USS-SS-DB01-041717/USS-SS-DB01-041717-D and USS-SS-PB02-041717/USS-SS-PB02-041717-D			
Field Blanks	None			

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Results were neither rejected nor qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within	Evenedance /Notes	Exceedance/Notes
Criteria		Exceedance/Notes
Υ		

Serial dilutions:

Within Criteria	Exceedance/Notes
Υ	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
Υ	

Field duplicates:	
Within Criteria	Exceedance/Notes
Υ	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Y	
Sample dilutions: Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and	HPLC analyses only):
Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within	Evenedance/Notes	
Criteria	Exceedance/Notes	
NA		

Target analyt	e identification
---------------	------------------

With Crite		Exceedance/Notes
NA	4	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All total chromium results were above the RL, while all hexavalent chromium results were non-detect.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

oyotem pe	······································
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.		
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.		
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.		
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.		
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.		
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).		
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.		

U.S. Steel Hexavalent Chrome Soil Results Pace Analytical Report No. 50168999

Sample ID	Lab ID	Analyte		Lab Results	Lab Qualifiers				Val. Results Val.	al. Qualifiers
USS-SS-BB01-041717 50168999007		Chromium		1.3		0.42	0.84	mg/kg	1.3	
USS-SS-BB01-041717	50168999007	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-BB02-041717	50168999008	Chromium		5.8		0.42	0.85	mg/kg	5.8	
USS-SS-BB02-041717	50168999008	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-DB01-041717	50168999001	Chromium		4.1		0.43	0.86	mg/kg	4.1	
USS-SS-DB01-041717	50168999001	Chromium, Hexav	/alent		U	0.63	1.9	mg/kg	1.9 U	
USS-SS-DB01-041717-D	50168999015	Chromium		2.6		0.45	0.91	mg/kg	2.6	
USS-SS-DB01-041717-D	50168999015	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-DB02-041717	50168999002	Chromium		1.8		0.49	0.99	mg/kg	1.8	
USS-SS-DB02-041717	50168999002	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-KB01-041717	50168999003	Chromium		1.9		0.45	0.90	mg/kg	1.9	
USS-SS-KB01-041717	50168999003	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-KB02-041717	50168999004	Chromium		2.3		0.44	0.87	mg/kg	2.3	
USS-SS-KB02-041717	50168999004	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-OD01-041717	50168999011	Chromium		2.1		0.48	0.97	mg/kg	2.1	
USS-SS-OD01-041717	50168999011	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-OD02-041717	50168999012	Chromium		2.0		0.45	0.91	mg/kg	2.0	
USS-SS-OD02-041717	50168999012	Chromium, Hexav	/alent		U	0.64	1.9	mg/kg	1.9 U	
USS-SS-PB01-041717	50168999005	Chromium		2.5		0.45	0.90	mg/kg	2.5	
USS-SS-PB01-041717	50168999005	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-PB02-041717	50168999006	Chromium		3.7		0.44	0.88	mg/kg	3.7	
USS-SS-PB02-041717	50168999006	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-PB02-041717-D	50168999016	Chromium		2.8		0.45	0.91	mg/kg	2.8	
USS-SS-PB02-041717-D	50168999016	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-PL01-041717	50168999013	Chromium		3.3		0.46	0.92	mg/kg	3.3	
USS-SS-PL01-041717	50168999013	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-PL02-041717	50168999014	Chromium		8.7		0.48	0.95	mg/kg	8.7	
USS-SS-PL02-041717	50168999014	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	
USS-SS-WB01-041717	50168999009	Chromium		1.8		0.43	0.86	mg/kg	1.8	
USS-SS-WB01-041717	50168999009	Chromium, Hexav	/alent		U	0.64	2.0	mg/kg	2.0 U	
USS-SS-WB02-041717	50168999010	Chromium		1.8				mg/kg	1.8	
USS-SS-WB02-041717	50168999010	Chromium, Hexav	/alent		U	0.65	2.0	mg/kg	2.0 U	

Site Name	u.S. Steel Hexavalent Chrome Release		S05-0001-1704-201	
Document Tracking No.	1688N	TDD No.	303-0001-1704-201	
Data Reviewer (signature and date)	Hang N. Ellis III 26 April 2017	Technical Reviewer (signature and date)	Jesaca A. Vickers May 2, 2017	
Laboratory Report No. 50169100		Laboratory	Pace Analytical/Indianapolis, Indiana	
Analyses Total chromium by EPA Method 200.7				
Samples and Matrix 72 Surface water samples				
Field Duplicate Pairs	Field Duplicate Pairs None			
Field Blanks	None			

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected or qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Three samples were received at the laboratory unpreserved (pH = 7). All samples were analyzed for total chromium on the day after collection; therefore, no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

interreteries check samples (165) (161	metals only).
Within Criteria	Exceedance/Notes
Υ	
System monitoring compounds (surro	ogates and labeled compounds):
Within Criteria	Exceedance/Notes
NA	
MS/MSD:	
Within Criteria	Exceedance/Notes
Y	
Post digestion spikes:	
Within Criteria	Exceedance/Notes
Y	
Serial dilutions:	
Within Criteria	Exceedance/Notes
Y	
Laboratory duplicates:	
Within Criteria	Exceedance/Notes
NA	

	EFA REGION 5 START CONTRACT
Field duplicates:	
Within Criteria	Exceedance/Notes
NA	
1.00 // 000	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Υ	
Sample dilutions:	
Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and H	PLC analyses only):
Within	
Criteria	Exceedance/Notes
NA	
Internal Standards:	
Within	
Criteria	Exceedance/Notes

NA

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes		
Υ	All detected results were less than their reporting limits. The laboratory correctly qualified these as estimated (flagged "J").		

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

oyotem pe	······································
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Analyte	Lab Results	Lab Qualifiers	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-002A-041817	50169100051	Chromium	1.5	J	0.58	10.0	ug/L	1.5 J
USS-SW-002B-041817	50169100052	Chromium	0.86	J	0.58	10.0	ug/L	0.86 J
USS-SW-003A-041817	50169100053	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-003B-041817	50169100054	Chromium	1.8	J	0.58	10.0	ug/L	1.8 J
USS-SW-004A-041817	50169100055	Chromium	2.6	J	0.58	10.0	ug/L	2.6 J
USS-SW-004B-041817	50169100056			J	0.58	10.0	ug/L	1.5 J
USS-SW-005A-041817	50169100057	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-005B-041817	50169100058			J	0.58	10.0	ug/L	1.7 J
USS-SW-006A-041817	50169100059			J		10.0	_	0.85 J
USS-SW-006B-041817	50169100060			J		10.0	-	2.3 J
USS-SW-007-A-041817	50169100061			J		10.0	_	0.9 J
USS-SW-007-B-041817	50169100062			J		10.0	_	1.2 J
USS-SW-008-A-041817	50169100063			J		10.0	_	1.5 J
USS-SW-008-B-041817	50169100064			J		10.0	-	1.8 J
USS-SW-009-A-041817	50169100065			J		10.0	_	1.4 J
USS-SW-009-B-041817	50169100066			J		10.0	_	1.3 J
USS-SW-010-A-041817	50169100067			J		10.0	•	1.0 J
USS-SW-010-B-041817	50169100068			J		10.0	_	1.2 J
USS-SW-011-A-041817	50169100069			J		10.0	_	2.2 J
USS-SW-011-B-041817	50169100070			J		10.0	_	1.3 J
USS-SW-012-A-041817	50169100071			J		10.0	-	1.7 J
USS-SW-012-B-041817	50169100072			J		10.0	_	1.8 J
USS-SW-A001-A-041817	50169100001			J		10.0	-	2.1 J
USS-SW-A001-B-041817	50169100002			J		10.0	•	2.8 J
USS-SW-A002-A-041817	50169100003			J		10.0	-	1.8 J
USS-SW-A002-B-041817	50169100004			J		10.0	_	2.5 J
USS-SW-A003-A-041817	50169100005			J		10.0	-	2.1 J
USS-SW-A003-B-041817	50169100006			J		10.0	•	1.8 J
USS-SW-B001-A-041817	50169100007			J		10.0	_	1.8 J
USS-SW-B001-B-041817	50169100008			J		10.0	_	2.1 J
USS-SW-B002-A-041817	50169100009			J		10.0	_	2.0 J
USS-SW-B002-B-041817	50169100010			J		10.0	-	2.0 J
USS-SW-B003-A-041817	50169100011			J		10.0	_	2.2 J
USS-SW-B003-B-041817	50169100012			J		10.0	•	2.6 J
USS-SW-C001-A-041817	50169100013			J		10.0	•	1.7 J
USS-SW-C001-B-041817	50169100014			J		10.0		2.0 J
USS-SW-C002-A-041817	50169100015	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J

Sample ID	Lab ID	Analyte	Lab Results	Lab Qualifiers	DL	RL	Units	Val. Results Val. Qualifiers
USS-SW-C002-B-041817	50169100016	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-C003-A-041817	50169100017	Chromium	3.7	J	0.58	10.0	ug/L	3.7 J
USS-SW-C003-B-041817	50169100018	Chromium	3.3	J	0.58	10.0	ug/L	3.3 J
USS-SW-D001-A-041817	50169100019	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-D001-B-041817	50169100020	Chromium	2.8	J	0.58	10.0	ug/L	2.8 J
USS-SW-D002-A-041817	50169100021	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-D002-B-041817	50169100022	Chromium	1.9	J	0.58	10.0	ug/L	1.9 J
USS-SW-D003-A-041817	50169100023	Chromium	2.6	J	0.58	10.0	ug/L	2.6 J
USS-SW-D003-B-041817	50169100024	Chromium	2.5	J	0.58	10.0	ug/L	2.5 J
USS-SW-E001-A-041817	50169100025	Chromium	2.2	J	0.58	10.0	ug/L	2.2 J
USS-SW-E001-B-041817	50169100026	Chromium	3.7	J	0.58	10.0	ug/L	3.7 J
USS-SW-E002-A-041817	50169100027	Chromium	2.8	J	0.58	10.0	ug/L	2.8 J
USS-SW-E002-B-041817	50169100028	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-E003-A-041817	50169100029	Chromium	3.4	J	0.58	10.0	ug/L	3.4 J
USS-SW-E003-B-041817	50169100030	Chromium	3.2	J	0.58	10.0	ug/L	3.2 J
USS-SW-F001-A-041817	50169100031	Chromium	2.4	J	0.58	10.0	ug/L	2.4 J
USS-SW-F001-B-041817	50169100032	Chromium	2.1	J	0.58	10.0	ug/L	2.1 J
USS-SW-F002-A-041817	50169100033	Chromium	2.3	J	0.58	10.0	ug/L	2.3 J
USS-SW-F002-B-041817	50169100034	Chromium	2.8	J	0.58	10.0	ug/L	2.8 J
USS-SW-F003-A-041817	50169100035	Chromium	1.7	J	0.58	10.0	ug/L	1.7 J
USS-SW-F003-B-041817	50169100036	Chromium	3.0	J	0.58	10.0	ug/L	3.0 J
USS-SW-G001-A-041817	50169100037	Chromium	2.4	J	0.58	10.0	ug/L	2.4 J
USS-SW-G001-B-041817	50169100038	Chromium	3.5	J	0.58	10.0	ug/L	3.5 J
USS-SW-G002-A-041817	50169100039	Chromium	2.9	J	0.58	10.0	ug/L	2.9 J
USS-SW-G002-B-041817	50169100040	Chromium	2.7	J	0.58	10.0	ug/L	2.7 J
USS-SW-G003-A-041817	50169100041	Chromium	2.5	J	0.58	10.0	ug/L	2.5 J
USS-SW-G003-B-041817	50169100042	Chromium	2.4	J	0.58	10.0	ug/L	2.4 J
USS-SW-H001-A-041817	50169100043	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-H001-B-041817	50169100044	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-H002-A-041817	50169100045	Chromium	2.5	J	0.58	10.0	ug/L	2.5 J
USS-SW-H002-B-041817	50169100046	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-H003-A-041817	50169100047	Chromium	1.3	J	0.58	10.0	ug/L	1.3 J
USS-SW-H003-B-041817	50169100048	Chromium	2.0	J	0.58	10.0	ug/L	2.0 J
USS-SW-Intake-A-041817	50169100049	Chromium	0.99	J		10.0		0.99 J
USS-SW-Intake-B-041817	50169100050	Chromium	0.93	J	0.58	10.0	ug/L	0.93 J

May 24, 2017

Andrew Maguire
On-Scene Coordinator
U.S. Environmental Protection Agency Region 5
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Subject: Data Validation Report

U.S. Steel Hexavalent Chrome Release

EPA Contract No. EP-S5-13-01

Technical Direction Document No. S05-0001-1704-201

Document Tracking No. 1730

Dear Mr. Maguire:

Tetra Tech, Inc. (Tetra Tech) is submitting these Data Validation Reports for 122 surface water samples (plus 13 field duplicates) and 38 soil samples (plus four field duplicates) collected at the U.S. Steel Hexavalent Chrome Release Site. The samples were collected on April 12 through 18, 2017, and were analyzed for hexavalent chromium and total chromium by STAT Analysis Corporation and Pace Analytical Laboratories. The last laboratory data package was received on May 12.

Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines* (NFG) Inorganic Superfund Data Review (January 2017).

No results were rejected. All may be used as qualified, as detailed in the attachment.

If you have any questions regarding these data validation reports, please call me at (312) 201-7756.

Sincerely,

START Chemist

Enclosure

cc: Kevin Scott, Tetra Tech Program Manager

Justin Button-Hutchens, Tetra Tech Project Manager

TDD File

Hang N. Elio II

ATTACHMENT 1

DATA VALIDATION REPORT STAT ANALYTICAL REPORTS 17040414, 17040415, 17040460, AND 17040461 AND PACE ANALYTICAL REPORT 50169099

Site Name	U.S. Steel Hexavalent Chrome Release		TDD No.	S05-0001-1704-201	
Document Tracking No.	1730A		וטט ווט.	303-0001-1704-201	
Data Reviewer	Hang N. Ellis II		Quality Control	0,00	
	Hang		Reviewer	23 May 2017	
(signature and date)	16 May 2017		(signature and date)	23 May 2017	
Laboratory Report No.	17040414		Laboratory	STAT Analysis/Chicago, Illinois	
Analyses	Hexavalent chromium by EPA SW-846 Met	ho	d 7196A		
Samples and Matrix	14 Soil samples				
Field Duplicate Pairs	None				
Field Blanks	None				

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Hexavalent chromium was not detected in any of the samples. Results were neither rejected nor qualified. All may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Y	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within	Even adams a / Notas
Criteria	Exceedance/Notes
NA	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Chec	k Samples	(ICS) (ICI	P metal:	s onl	y):	
-------------------	-----------	------------	----------	-------	-----	--

Within	Exceedance/Notes
Criteria	·
NA	
System monitoring compounds (surro	rates and labeled compounds):
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
NA	
MS/MSD:	
Within	Evenadance/Notes
Criteria	Exceedance/Notes
 	
Υ	
Υ	
Post digestion spikes:	
	Funca damas /Natas
Post digestion spikes:	Exceedance/Notes
Post digestion spikes: Within	Exceedance/Notes
Post digestion spikes: Within Criteria	Exceedance/Notes
Post digestion spikes: Within Criteria	Exceedance/Notes
Post digestion spikes: Within Criteria NA	
Post digestion spikes: Within Criteria NA Serial dilutions:	Exceedance/Notes Exceedance/Notes
Post digestion spikes: Within Criteria NA Serial dilutions: Within	
Post digestion spikes: Within Criteria NA Serial dilutions: Within Criteria	
Post digestion spikes: Within Criteria NA Serial dilutions: Within Criteria	
Post digestion spikes: Within Criteria NA Serial dilutions: Within Criteria NA	

NA

	EFA REGION 5 START CONTRACT
Field duplicates:	
Within Criteria	Exceedance/Notes
NA	
1.00 // 000	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Υ	
Sample dilutions:	
Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and H	PLC analyses only):
Within	
Criteria	Exceedance/Notes
NA	
Internal Standards:	
Within	
Criteria	Exceedance/Notes

NA

Larget ana	N/#A 16	OPTITIO	こつもいへい・
Target anal	IVLE IU	enun	.auvii.
	,		

With Crite		Exceedance/Notes
NA	4	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	No hexavalent chromium was detected in the field samples.

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

_	Other laber	
	Within	Exceedance/Notes
	Criteria	Exceedance/Notes
	NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hex Chrome Release Soil Results STAT Report No. 17040414

Sample ID	Lab ID	Chemical_Name	Lab Results	Lab Qualifiers	MDL	RL	DF	Units	Val. Results	Val. Qualifiers
USS-SS-DB01-041217	17040414-001	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-DB02-041217	17040414-002	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-KB01-041217	17040414-003	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-KB02-041217	17040414-004	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-PB01-041217	17040414-005	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-PB02-041217	17040414-006	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-BB01-041217	17040414-007	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-BB02-041217	17040414-008	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-WB01-041217	17040414-009	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-WB02-041217	17040414-010	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-OD01-041217	17040414-011	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-OD02-041217	17040414-012	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-PL01-041217	17040414-013	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U
USS-SS-PL02-041217	17040414-014	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4	U

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201		
Document Tracking No.	1730B	וטט ואט.	303-0001-1704-201		
Data Reviewer (signature and date)	Hang N. Elis III 16 May 2017	Quality Control Reviewer (signature and date)	23 May 2017		
Laboratory Report No.	17040415	Laboratory	STAT Analysis/Chicago, Illinois		
Analyses	Total chromium by EPA SW-846 Method 60	20 and hexavalent chrom	ium by EPA SW-846 Method 7196A		
Samples and Matrix	57 Surface water samples plus field duplica	te			
Field Duplicate Pairs	USS-SW-UPTAKE-A-041217/USS-SW-UPTAR	(E-A-041217-D			
Field Blanks	Blanks None				

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No result were rejected, but a number were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Most samples were analyzed for hexavalent chromium a few hours after expiration of the 24-hour holding time. STAT flagged these results "H". They were qualified as estimated, possibly biased low, and flagged "UJ" or "J-", as appropriate.
	Nine samples were not properly preserved (acidified) for total chromium analysis. They were acidified on arrival at the laboratory and analyzed within 2 days of collection, so no qualifications were applied.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

N	let	hod	b	lan	ks:
---	-----	-----	---	-----	-----

Within Criteria	FYCEPRANCE/NOTES
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Seria		

Within Criteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	All samples were analyzed for total chromium at 2-fold dilutions to minimize matrix interference. No qualifications were applied.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation	(GC and HPLC analy	yses only	y):
----------------------------	--------------------	-----------	-----

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
Υ	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes					
Υ	Some detected results were below their sample reporting limits. STAT correctly flagged these results "J" as estimates.					

Tentatively identified compounds:

Within Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Within Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Chemical_Name		Lab Qualifier		RL D			Val. Results	
USS-DW-Wetwell-041217	17040415-058		0.00094	J		0.0020		mg/L	0.00094	
USS-DW-Wetwell-041217		Chromium, Hexavalent		UH	0.002	0.010		mg/L	0.01	UJ
USS-SW-002-A-041217	17040415-052		0.0047		0.0006			mg/L	0.0047	
USS-SW-002-A-041217	17040415-052	Chromium, Hexavalent		J	0.002	0.010		mg/L	0.0026	J
USS-SW-002-B-041217	17040415-053		0.0049			0.0020	2	mg/L	0.0049	
USS-SW-002-B-041217	17040415-053	Chromium, Hexavalent	0.0026	J	0.002	0.010	1	mg/L	0.0026	J
USS-SW-003-A-041217	17040415-054	Chromium	0.0049		0.0006	0.0020	2	mg/L	0.0049	
USS-SW-003-A-041217	17040415-054	Chromium, Hexavalent	0.0025	J	0.002	0.010	1	mg/L	0.0025	J
USS-SW-003-B-041217	17040415-055	Chromium	0.0055		0.0006	0.0020	2	mg/L	0.0055	
USS-SW-003-B-041217	17040415-055	Chromium, Hexavalent	0.0029	J	0.002	0.010	1	mg/L	0.0029	J
USS-SW-004-A-041217	17040415-056	Chromium	0.0044		0.0006	0.0020	2	mg/L	0.0044	
USS-SW-004-A-041217	17040415-056	Chromium, Hexavalent	0.010	U	0.002	0.010	1	mg/L	0.01	U
USS-SW-004-B-041217	17040415-057	Chromium	0.0046		0.0006	0.0020	2	mg/L	0.0046	
USS-SW-004-B-041217	17040415-057	Chromium, Hexavalent	0.0021	J	0.002	0.010		mg/L	0.0021	J
USS-SW-A001-A-041217	17040415-001	Chromium	0.0018	J	0.0006	0.0020	2	mg/L	0.0018	J
USS-SW-A001-A-041217	17040415-001	Chromium, Hexavalent	0.010	UH	0.002	0.010		mg/L	0.01	UJ
USS-SW-A001-B-041217	17040415-002	Chromium	0.0018	J	0.0006	0.0020	2	mg/L	0.0018	J
USS-SW-A001-B-041217	17040415-002	Chromium, Hexavalent	0.010	UH	0.002	0.010		mg/L	0.01	UJ
USS-SW-A002-A-041217	17040415-003	Chromium	0.0019	J	0.0006	0.0020	2	mg/L	0.0019	J
USS-SW-A002-A-041217	17040415-003	Chromium, Hexavalent	0.010	UH	0.002	0.010		mg/L	0.01	UJ
USS-SW-A002-B-041217	17040415-004	Chromium	0.0019	J	0.0006	0.0020	2	mg/L	0.0019	J
USS-SW-A002-B-041217	17040415-004	Chromium, Hexavalent	0.0024	JH	0.002	0.010		mg/L	0.0024	J-
USS-SW-A003-A-041217	17040415-005	Chromium	0.0019	J	0.0006	0.0020	2	mg/L	0.0019	J
USS-SW-A003-A-041217	17040415-005	Chromium, Hexavalent	0.0024	JH	0.002	0.010		mg/L	0.0024	J-
USS-SW-A003-B-041217	17040415-006	Chromium	0.0017	J	0.0006	0.0020	2	mg/L	0.0017	J
USS-SW-A003-B-041217	17040415-006	Chromium, Hexavalent	0.010	UH	0.002	0.010		mg/L	0.01	UJ
USS-SW-B001-A-041217	17040415-007	Chromium	0.0018	J	0.0006	0.0020		mg/L	0.0018	J
USS-SW-B001-A-041217	17040415-007	Chromium, Hexavalent	0.0022	JH	0.002	0.010		mg/L	0.0022	J-
USS-SW-B001-B-041217	17040415-008	Chromium	0.0020		0.0006	0.0020	2	mg/L	0.002	
USS-SW-B001-B-041217		Chromium, Hexavalent	0.0021	JH	0.002	0.010		mg/L	0.0021	J-
USS-SW-B002-A-041217	17040415-009	Chromium	0.0021		0.0006	0.0020		mg/L	0.0021	
USS-SW-B002-A-041217		Chromium, Hexavalent		JH	0.002	0.010		mg/L	0.0022	J-
USS-SW-B002-B-041217	17040415-010		0.0018	J		0.0020		mg/L	0.0018	
USS-SW-B002-B-041217		Chromium, Hexavalent		UH	0.002	0.010		mg/L	0.01	
USS-SW-B003-A-041217	17040415-011	·	0.0018	J		0.0020		mg/L	0.0018	

Sample ID	Lab ID	Chemical_Name	Lab Result	Lab Qualifier	DL	RL	DF	Units	Val. Results Val. Qualifiers
USS-SW-B003-A-041217	17040415-011	Chromium, Hexavalent	0.0045	JH	0.002	0.010		1 mg/L	0.0045 J-
USS-SW-B003-B-041217	17040415-012	Chromium	0.0019	J	0.0006	0.0020		2 mg/L	0.0019 J
USS-SW-B003-B-041217	17040415-012	Chromium, Hexavalent	0.0031	JH	0.002	0.010		1 mg/L	0.0031 J-
USS-SW-C001-A-041217	17040415-013	Chromium	0.0017	J	0.0006	0.0020		2 mg/L	0.0017 J
USS-SW-C001-A-041217	17040415-013	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-C001-B-041217	17040415-014	Chromium	0.0017	J	0.0006	0.0020		2 mg/L	0.0017 J
USS-SW-C001-B-041217	17040415-014	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-C002-A-041217	17040415-015	Chromium	0.0017	J	0.0006	0.0020		2 mg/L	0.0017 J
USS-SW-C002-A-041217	17040415-015	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-C002-B-041217	17040415-016	Chromium	0.0094		0.0006	0.0020		2 mg/L	0.0094
USS-SW-C002-B-041217	17040415-016	Chromium, Hexavalent	0.0026	JH	0.002	0.010		1 mg/L	0.0026 J-
USS-SW-C003-A-041217	17040415-017	Chromium	0.026		0.0006	0.0020		2 mg/L	0.026
USS-SW-C003-A-041217	17040415-017	Chromium, Hexavalent	0.0026	JH	0.002	0.010		1 mg/L	0.0026 J-
USS-SW-C003-B-041217	17040415-018	Chromium	0.028		0.0006	0.0040		2 mg/L	0.028
USS-SW-C003-B-041217	17040415-018	Chromium, Hexavalent	0.0021	JH	0.002	0.010		1 mg/L	0.0021 J-
USS-SW-D001-A-041217	17040415-019	Chromium	0.0028		0.0006	0.0020		2 mg/L	0.0028
USS-SW-D001-A-041217	17040415-019	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-D001-B-041217	17040415-020	Chromium	0.0025		0.0006	0.0020		2 mg/L	0.0025
USS-SW-D001-B-041217	17040415-020	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-D002-A-041217	17040415-021	Chromium	0.0020		0.0006	0.0020		2 mg/L	0.002
USS-SW-D002-A-041217	17040415-021	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-D002-B-041217	17040415-022	Chromium	0.0023		0.0006	0.0020		2 mg/L	0.0023
USS-SW-D002-B-041217	17040415-022	Chromium, Hexavalent	0.0025	JH	0.002	0.010		1 mg/L	0.0025 J-
USS-SW-D003-A-041217	17040415-023	Chromium	0.0092		0.0006	0.0020		2 mg/L	0.0092
USS-SW-D003-A-041217	17040415-023	Chromium, Hexavalent	0.0022	JH	0.002	0.010		1 mg/L	0.0022 J-
USS-SW-D003-B-041217	17040415-024	Chromium	0.0088		0.0006	0.0020		2 mg/L	0.0088
USS-SW-D003-B-041217	17040415-024	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-E001-A-041217	17040415-025	Chromium	0.0026		0.0006	0.0020		2 mg/L	0.0026
USS-SW-E001-A-041217	17040415-025	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-E001-B-041217	17040415-026	Chromium	0.0025		0.0006	0.0020		2 mg/L	0.0025
USS-SW-E001-B-041217	17040415-026	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-E002-A-041217	17040415-027	Chromium	0.0027		0.0006	0.0020		2 mg/L	0.0027
USS-SW-E002-A-041217	17040415-027	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-E002-B-041217	17040415-028	Chromium	0.0026		0.0006	0.0020		2 mg/L	0.0026
USS-SW-E002-B-041217	17040415-028	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ

Sample ID	Lab ID	Chemical_Name	Lab Result	Lab Qualifier	DL	RL D	F Units	Val. Results Val. Qualifiers
USS-SW-E003-A-041217	17040415-029	Chromium	0.0057		0.0006	0.0020	2 mg/L	0.0057
USS-SW-E003-A-041217	17040415-029	Chromium, Hexavalent	0.0022	JH	0.002	0.010	1 mg/L	0.0022 J-
USS-SW-E003-B-041217	17040415-030	Chromium	0.0065		0.0006	0.0020	2 mg/L	0.0065
USS-SW-E003-B-041217	17040415-030	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-F001-A-041217	17040415-031	Chromium	0.0026		0.0006	0.0020	2 mg/L	0.0026
USS-SW-F001-A-041217	17040415-031	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-F001-B-041217	17040415-032	Chromium	0.0034		0.0006	0.0020	2 mg/L	0.0034
USS-SW-F001-B-041217	17040415-032	Chromium, Hexavalent	0.0023	JH	0.002	0.010	1 mg/L	0.0023 J-
USS-SW-F002-A-041217	17040415-033	Chromium	0.0024		0.0006	0.0020	2 mg/L	0.0024
USS-SW-F002-A-041217	17040415-033	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-F002-B-041217	17040415-034	Chromium	0.0025		0.0006	0.0020	2 mg/L	0.0025
USS-SW-F002-B-041217	17040415-034	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-F003-A-041217	17040415-035	Chromium	0.0072		0.0006	0.0020	2 mg/L	0.0072
USS-SW-F003-A-041217	17040415-035	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-F003-B-041217	17040415-036	Chromium	0.0069		0.0006	0.0020	2 mg/L	0.0069
USS-SW-F003-B-041217	17040415-036	Chromium, Hexavalent	0.0023	JH	0.002	0.010	1 mg/L	0.0023 J-
USS-SW-G001-A-041217	17040415-037	Chromium	0.0058		0.0006	0.0020	2 mg/L	0.0058
USS-SW-G001-A-041217	17040415-037	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-G001-B-041217	17040415-038	Chromium	0.0057		0.0006	0.0020	2 mg/L	0.0057
USS-SW-G001-B-041217	17040415-038	Chromium, Hexavalent	0.0036	JH	0.002	0.010	1 mg/L	0.0036 J-
USS-SW-G002-A-041217	17040415-039	Chromium	0.0071		0.0006	0.0020	2 mg/L	0.0071
USS-SW-G002-A-041217	17040415-039	Chromium, Hexavalent	0.0024	JH	0.002	0.010	1 mg/L	0.0024 J-
USS-SW-G002-B-041217	17040415-040	Chromium	0.0061		0.0006	0.0020	2 mg/L	0.0061
USS-SW-G002-B-041217	17040415-040	Chromium, Hexavalent	0.0022	JH	0.002	0.010	1 mg/L	0.0022 J-
USS-SW-G003-A-041217	17040415-041	Chromium	0.0071		0.0006	0.0020	2 mg/L	0.0071
USS-SW-G003-A-041217	17040415-041	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-G003-B-041217	17040415-042	Chromium	0.0077		0.0006	0.0020	2 mg/L	0.0077
USS-SW-G003-B-041217	17040415-042	Chromium, Hexavalent	0.0021	JH	0.002	0.010	1 mg/L	0.0021 J-
USS-SW-H001-A-041217	17040415-043	Chromium	0.0063		0.0006	0.0020	2 mg/L	0.0063
USS-SW-H001-A-041217	17040415-043	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-H001-B-041217	17040415-044	Chromium	0.0067		0.0006	0.0020	2 mg/L	0.0067
USS-SW-H001-B-041217	17040415-044	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-H002-A-041217	17040415-045	Chromium	0.0097		0.0006	0.0020	2 mg/L	0.0097
USS-SW-H002-A-041217	17040415-045	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-H002-B-041217	17040415-046	Chromium	0.015		0.0006	0.0020	2 mg/L	0.015

Sample ID	Lab ID	Chemical_Name	Lab Result	Lab Qualifier	DL	RL	DF	Units	Val. Results Val. Qualifiers
USS-SW-H002-B-041217	17040415-046	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-H003-A-041217	17040415-047	Chromium	0.0085		0.0006	0.0020		2 mg/L	0.0085
USS-SW-H003-A-041217	17040415-047	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-H003-B-041217	17040415-048	Chromium	0.0091		0.0006	0.0020		2 mg/L	0.0091
USS-SW-H003-B-041217	17040415-048	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-INTAKE-A-041217	17040415-049	Chromium	0.0021		0.0006	0.0020		2 mg/L	0.0021
USS-SW-INTAKE-A-041217	17040415-049	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-INTAKE-A-041217-D	17040415-050	Chromium	0.0020		0.0006	0.0020		2 mg/L	0.002
USS-SW-INTAKE-A-041217-D	17040415-050	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-INTAKE-B-041217	17040415-051	Chromium	0.0014	J	0.0006	0.0020		2 mg/L	0.0014 J
USS-SW-INTAKE-B-041217	17040415-051	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	SOE 0001 1704 201				
Document Tracking No.	1730C	וטט אס.	S05-0001-1704-201				
Data Reviewer	Hang N. Ellis II	Quality Control	0,00				
	0	Reviewer	John Reign				
(signature and date)	17 May 2017	(signature and date)	23 May 2017				
Laboratory Report No.	17040460	Laboratory	STAT Analysis/Chicago, Illinois				
Analyses	Hexavalent chromium by EPA SW-846 Met	hod 7196A					
Samples and Matrix	14 Soil samples, 7 surface water samples, and 3 field duplicates (2 soil and 1 water)						
Field Developte Daire	USS-SS-BB01-041317/USS-SS-BB01-041217-D, USS-SS-BB02-041217/USS-SS-BB02-071317-D, and USS						
Field Duplicate Pairs	041317/USS-SW-BB02-041317						
Field Blanks	None						

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Hexavalent chromium was not detected in any of the samples. No results were rejected, but some were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	The surface water samples were analyzed a few hours after expiration of the 24-hour holding time. Therefore, the surface water
	results were qualified as estimated, possibly biased low, and flagged "UJ".

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Sam	ples (ICS) (ICP	metals onl	y):
------------------------	-----------	--------	------------	-----

Within	Exceedance/Notes
Criteria	
NA	
System monitoring compounds (surro	gates and labeled compounds):
Within	Exceedance/Notes
Criteria	Exceedince/ Notes
NA	
MS/MSD:	
Within	
Criteria	Exceedance/Notes
Υ	
L	
Post digestion spikes:	
Within	E Annua
Criteria	Exceedance/Notes
NA	
0. 4.1 49 45	
Serial dilutions:	
Within	Exceedance/Notes
Criteria	
NA	
Laboratory duplicates:	
Within	Farer device (Notes
Criteria	Exceedance/Notes

Criteria NA

Field duplicates:	
Within Criteria	Exceedance/Notes
Υ	
LCSs/LCSDs:	
Within Criteria	Exceedance/Notes
Y	
Sample dilutions: Within	
Criteria	Exceedance/Notes
NA	
Re-extraction and reanalysis:	
Within Criteria	Exceedance/Notes
NA	
Second column confirmation (GC and	HPLC analyses only):
Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within	Evenedance/Notes	
Criteria	Exceedance/Notes	
NA		

With Crite		Exceedance/Notes
NA	4	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	All results were nondetected.

Tentatively identified compounds:

· Ciitativ	ny facitimes composition
Within	Evenedones /Notes
Criteria	Exceedance/Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

C tire: [cpc.	<i></i> 11.
Within	Exceedance/Notes
Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hex Chrome Release Soil and Water Results STAT Analytical Report No. 17040460

Sample ID	Lab ID	Chemical_Name	Lab Result	Lab Qualifier	DL	RL	DF	Units	Val. Results Val. Qualifiers
USS-SS-BB01-041317	17040460-007	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-BB01-041317-D	17040460-008	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-BB02-041317	17040460-009	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-BB02-041317-D	17040460-010	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-DB01-041317	17040460-001	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-DB02-041317	17040460-002	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-KB01-041317	17040460-003	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-KB02-041317	17040460-004	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-OD01-041317	17040460-013	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-OD02-041317	17040460-014	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-PB01-041317	17040460-005	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-PB02-041317	17040460-006	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-PL01-041317	17040460-015	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-PL02-041317	17040460-016	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-WB01-041317	17040460-011	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SS-WB02-041317	17040460-012	Chromium, Hexavalent	0.40	U	0.16	0.40		1 mg/Kg	0.4 U
USS-SW-BB02-041317	17040460-020	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-BB02-041317-D	17040460-021	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-DB02-041317	17040460-017	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-KB02-041317	17040460-018	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-OD02-041317	17040460-023	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-PB02-041317	17040460-019	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-PL02-041317	17040460-024	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ
USS-SW-WB02-041317	17040460-022	Chromium, Hexavalent	0.010	UH	0.002	0.010		1 mg/L	0.01 UJ

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	\$05-0001-1704-201		
Document Tracking No.	1730D	IDD NO.	303-0001-1704-201		
Data Reviewer	Rev		John Riege		
(signature and date)	17 May 2017	(signature and date)	23 May 2017		
Laboratory Report No.	17040461	Laboratory	STAT Analysis/Chicago, Illinois		
Analyses	Total chromium by EPA SW-846 Method 6020 and hexavalent chromium by EPA SW-846 Method 7196A				
Samples and Matrix	58 Surface water samples and 11 field duplicate samples				
Field Duplicate Pairs	USS-SW-A003-A-041317/USS-SW-A003-A-041317-D, USS-SW-C003-A-041317/USS-SW-C003-A-041317-D, USS-SW-F001-A/USS-SW-F001-A-041317-D, USS-SW-F003-A-041317-D, USS-SW-G001-B-041317/USS-SW-G001-B-041317-D, USS-SS-INTAKE-A-041317-D, USS-SW-002-A-041317-D, USS-SW-002-B-041317/USS-SW-002-B-041317-D, USS-SW-003-B-041317/USS-SW-003-B-041317-D, USS-SW-004-B-041317/USS-SW-004-B-041317-D, and USS-SW-005-B-041317/USS-SW-005-B-041317-D				
Field Blanks	None				

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but a number were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
N	Many samples were analyzed for hexavalent chromium one or more hours after expiration of their 24-hour holding times. STAT flagged these "H". All such results were qualified as estimated, probably biased low, and flagged "UJ" or "J-", as appropriate.

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

_	 			
_		h	lan	vc
П	u	v	ıaıı	NO.

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
Υ	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
Υ	

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Serial dilutions:

Within Criteria	Exceedance/Notes
NA	

Lal	bo	rate	orv	dur	olic	ates	
	-		-· ,	~~,	••••		

Within Criteria	Exceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
Υ	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	All total chromium analyses were performed at 2-fold dilutions to minimize matrix interference.

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal	l Stand	lard	s
----------	---------	------	---

Within Criteria	Exceedance/Notes
Υ	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	Many of the detected results were less than their sample reporting limits. STAT correctly flagged these "J" to indicate that they are estimated.

Tentatively identified compounds:

Citative	y racritinea compounds.
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

other labe	outer [speaky].	
Within	Exceedance/Notes	
Criteria	Exceedance/ Notes	
NA		

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

Sample ID	Lab ID	Chemical_Name	Lab Results	Lab Qualifiers	DL	RL	DF	Units	Val. Results	Val. Qualifiers
USS-SW-002-A-041317	17040461-057	Chromium	0.0017	J	0.0006	0.0020	2	2 mg/L	0.0017	J
USS-SW-002-A-041317	17040461-057	Chromium, Hexavalent	0.0022	J	0.002	0.010	•	l mg/L	0.0022	J
USS-SW-002-A-041317-D	17040461-059	Chromium	0.0018	J	0.0006	0.0020	2	2 mg/L	0.0018	J
USS-SW-002-B-041317	17040461-058	Chromium	0.0017	J	0.0006	0.0020	2	2 mg/L	0.0017	J
USS-SW-002-B-041317	17040461-058	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-002-B-041317-D	17040461-060	Chromium	0.0018	J	0.0006	0.0020	2	2 mg/L	0.0018	J
USS-SW-002-B-041317-D	17040461-060	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-003-A-041317	17040461-061	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-003-A-041317	17040461-061	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-003-B-041317	17040461-062	Chromium	0.0018	J	0.0006	0.0020	2	2 mg/L	0.0018	J
USS-SW-003-B-041317	17040461-062	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-003-B-041317-D	17040461-063	Chromium	0.0016	J	0.0006	0.0020	2	2 mg/L	0.0016	J
USS-SW-004-A-041317	17040461-064	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-004-A-041317	17040461-064	Chromium, Hexavalent	0.010	U	0.002	0.010		I mg/L	0.01	U
USS-SW-004-B-041317	17040461-065	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-004-B-041317	17040461-065	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-004-B-041317-D	17040461-069	Chromium	0.0016	J	0.0006	0.0020	2	2 mg/L	0.0016	J
USS-SW-004-B-041317-D	17040461-069	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-005-A-041317	17040461-066	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-005-A-041317	17040461-066	Chromium, Hexavalent	0.010	U	0.002	0.010	•	I mg/L	0.01	U
USS-SW-005-B-041317	17040461-067	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-005-B-041317	17040461-067	Chromium, Hexavalent	0.010	U	0.002	0.010		I mg/L	0.01	U
USS-SW-005-B-041317-D	17040461-068	Chromium	0.0016	J	0.0006	0.0020	2	2 mg/L	0.0016	J
USS-SW-A001-A-041317	17040461-001	Chromium	0.0017	J	0.0006	0.0020	2	2 mg/L	0.0017	J
USS-SW-A001-A-041317	17040461-001	Chromium, Hexavalent	0.0022	JH	0.002	0.010	•	I mg/L	0.0022	J-
USS-SW-A001-B-041317	17040461-002	Chromium	0.0016	J	0.0006	0.0020	2	2 mg/L	0.0016	J
USS-SW-A001-B-041317	17040461-002	Chromium, Hexavalent	0.010	UH	0.002	0.010	•	l mg/L	0.01	J-
USS-SW-A002-A-041317	17040461-003	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-A002-A-041317	17040461-003	Chromium, Hexavalent	0.010	UH	0.002	0.010	•	l mg/L	0.01	UJ
USS-SW-A002-B-041317	17040461-004	Chromium	0.0015	J	0.0006	0.0020	2	2 mg/L	0.0015	J
USS-SW-A002-B-041317	17040461-004	Chromium, Hexavalent	0.010	UH	0.002	0.010	•	l mg/L	0.01	UJ
USS-SW-A003-A-041317	17040461-005	Chromium	0.0014	J	0.0006	0.0020	2	2 mg/L	0.0014	J
USS-SW-A003-A-041317		Chromium, Hexavalent	0.010	UH	0.002	0.010		I mg/L		UJ
USS-SW-A003-A-041317-D	17040461-006	Chromium, Hexavalent	0.0020	JH	0.002	0.010		l mg/L	0.002	J-
USS-SW-A003-B-041317	17040461-007	Chromium	0.0013	J	0.0006	0.0020		2 mg/L	0.0013	J

Sample ID	Lab ID	Chemical_Name	Lab Results	Lab Qualifiers	DL	RL	DF Units	Val. Results Val. Qualifiers
USS-SW-A003-B-041317	17040461-007	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-B001-A-041317	17040461-008	Chromium	0.0015	J	0.0006	0.0020	2 mg/L	0.0015 J
USS-SW-B001-A-041317	17040461-008	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-B001-B-041317	17040461-009	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	0.0014 J
USS-SW-B001-B-041317	17040461-009	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-B002-A	17040461-010	Chromium	0.0016	J	0.0006	0.0020	2 mg/L	0.0016 J
USS-SW-B002-A	17040461-010	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-B002-B	17040461-011	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	. 0.0014 J
USS-SW-B002-B	17040461-011	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-B003-A	17040461-012	Chromium	0.0018	J	0.0006	0.0020	2 mg/L	0.0018 J
USS-SW-B003-A	17040461-012	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-B003-B	17040461-013	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	0.0014 J
USS-SW-B003-B	17040461-013	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-C001-A	17040461-014	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	0.0014 J
USS-SW-C001-A	17040461-014	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-C001-A-041317-D	17040461-018	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	0.0014 J
USS-SW-C001-B	17040461-015	Chromium	0.0014	J	0.0006	0.0020	2 mg/L	0.0014 J
USS-SW-C001-B	17040461-015	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	
USS-SW-C002-A	17040461-016	Chromium	0.0016	J	0.0006	0.0020	2 mg/L	0.0016 J
USS-SW-C002-A	17040461-016	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-C002-B	17040461-017	Chromium	0.0015	J	0.0006	0.0020	2 mg/L	0.0015 J
USS-SW-C002-B	17040461-017	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-C003-A-041317	17040461-019	Chromium	0.0018	J	0.0006	0.0020	2 mg/L	0.0018 J
USS-SW-C003-A-041317	17040461-019	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-C003-B-041317	17040461-020	Chromium	0.0020		0.0006	0.0020	2 mg/L	0.002
USS-SW-C003-B-041317	17040461-020	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-D001-A	17040461-021	Chromium	0.0019	J	0.0006	0.0020	2 mg/L	0.0019 J
USS-SW-D001-A	17040461-021	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-D001-B	17040461-022	Chromium	0.0029		0.0006	0.0020	2 mg/L	0.0029
USS-SW-D001-B	17040461-022	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	. 0.01 UJ
USS-SW-D002-A	17040461-023	Chromium	0.0015	J	0.0006	0.0020	2 mg/L	0.0015 J
USS-SW-D002-A	17040461-023	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	0.01 UJ
USS-SW-D002-B	17040461-024	Chromium	0.0016	J	0.0006	0.0020	2 mg/L	. 0.0016 J
USS-SW-D002-B	17040461-024	Chromium, Hexavalent	0.010	UH	0.002	0.010	1 mg/L	
USS-SW-D003-A	17040461-025	Chromium	0.0016	J	0.0006	0.0020	2 mg/L	. 0.0016 J

Sample ID USS-SW-D003-A	Lab ID	Chemical_Name Chromium, Hexavalent		Lab Qualifiers UH	DL 0.002	RL 0.010	DF	Units I mg/L	Val. Results 0.01	Val. Qualifiers
USS-SW-D003-A	17040461-026	,	0.010	J		0.0020		2 mg/L		
USS-SW-D003-B		Chromium, Hexavalent		UH	0.0000	0.0020		l mg/L	0.0017	
USS-SW-E001-A	17040461-027	-	0.0020	J		0.0020		2 mg/L	0.002	
USS-SW-E001-A		Chromium, Hexavalent		UH	0.000	0.0020		l mg/L	0.002	
USS-SW-E001-B	17040461-028	-	0.0022	011		0.0020		2 mg/L	0.0022	
USS-SW-E001-B		Chromium, Hexavalent		UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-E002-A	17040461-029		0.0029			0.0020		2 mg/L	0.0029	
USS-SW-E002-A		Chromium, Hexavalent		UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-E002-B	17040461-030		0.0021		0.0006	0.0020		2 mg/L	0.0021	
USS-SW-E002-B		Chromium, Hexavalent		UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-E003-A	17040461-031		0.0017	J	0.0006	0.0020		2 mg/L	0.0017	J
USS-SW-E003-A	17040461-031	Chromium, Hexavalent	0.010	UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-E003-B	17040461-032	Chromium	0.0019	J	0.0006	0.0020	2	2 mg/L	0.0019	J
USS-SW-E003-B	17040461-032	Chromium, Hexavalent	0.010	UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-F001-A	17040461-033	Chromium	0.0069		0.0006	0.0020	2	2 mg/L	0.0069	
USS-SW-F001-A	17040461-033	Chromium, Hexavalent	0.010	UH	0.002	0.010	•	l mg/L	0.01	UJ
USS-SW-F001-B	17040461-034	Chromium	0.0021		0.0006	0.0020	2	2 mg/L	0.0021	
USS-SW-F001-B	17040461-034	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	UJ
USS-SW-F001-B-041317-D	17040461-035	Chromium	0.0021		0.0006	0.0020	2	2 mg/L	0.0021	
USS-SW-F002-A	17040461-036	Chromium	0.0023		0.0006	0.0020	2	2 mg/L	0.0023	
USS-SW-F002-A	17040461-036	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	UJ
USS-SW-F002-B	17040461-037	Chromium	0.0026		0.0006	0.0020	2	2 mg/L	0.0026	
USS-SW-F002-B	17040461-037	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	UJ
USS-SW-F003-A	17040461-038	Chromium	0.0029			0.0020	2	2 mg/L		
USS-SW-F003-A		Chromium, Hexavalent		UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-F003-A-041317-D	17040461-040		0.0023			0.0020	2	2 mg/L	0.0023	
USS-SW-F003-B	17040461-039		0.0026			0.0020		2 mg/L	0.0026	
USS-SW-F003-B		Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	
USS-SW-G001-A-041317	17040461-041		0.0015	J		0.0020		2 mg/L	0.0015	
USS-SW-G001-A-041317		Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	
USS-SW-G001-B-041317	17040461-042		0.0016	J		0.0020		2 mg/L	0.0016	
USS-SW-G001-B-041317		Chromium, Hexavalent		UH	0.002	0.010		l mg/L	0.01	UJ
USS-SW-G001-B-041317-D	17040461-043		0.0026			0.0020		2 mg/L	0.0026	
USS-SW-G001-B-041317-D	17040461-043	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	l mg/L	0.01	UJ

Sample ID	Lab ID	Chemical_Name	Lab Results	Lab Qualifiers	DL	RL	DF	Units	Val. Results Val.	Qualifiers
USS-SW-G002-A-041317	17040461-044	Chromium	0.0013	J	0.0006	0.0020	2	2 mg/L	0.0013 J	
USS-SW-G002-A-041317	17040461-044	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-G002-B-041317	17040461-045	Chromium	0.0020	J	0.0006	0.0020	2	2 mg/L	0.002 J	
USS-SW-G002-B-041317	17040461-045	Chromium, Hexavalent	0.0022	JH	0.002	0.010	1	mg/L	0.0022 J-	
USS-SW-G003-A-041317	17040461-046	Chromium	0.0028		0.0006	0.0020	2	2 mg/L	0.0028	
USS-SW-G003-A-041317	17040461-046	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-G003-B-041317	17040461-047	Chromium	0.0032		0.0006	0.0020	2	2 mg/L	0.0032	
USS-SW-G003-B-041317	17040461-047	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-H001-A-041317	17040461-048	Chromium	0.0030		0.0006	0.0020	2	2 mg/L	0.003	
USS-SW-H001-A-041317	17040461-048	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-H001-B-041317	17040461-049	Chromium	0.0031		0.0006	0.0020	2	2 mg/L	0.0031	
USS-SW-H001-B-041317	17040461-049	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-H002-A-041317	17040461-050	Chromium	0.0032		0.0006	0.0020	2	2 mg/L	0.0032	
USS-SW-H002-A-041317	17040461-050	Chromium, Hexavalent	0.0030	JH	0.002	0.010	1	mg/L	0.003 J-	
USS-SW-H002-B-041317	17040461-051	Chromium	0.014		0.0006	0.0020	2	2 mg/L	0.014	
USS-SW-H002-B-041317	17040461-051	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-H003-A041317	17040461-052	Chromium	0.0018	J	0.0006	0.0020	2	2 mg/L	0.0018 J	
USS-SW-H003-A041317	17040461-052	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-H003-B-041317	17040461-053	Chromium	0.0019	J	0.0006	0.0020	2	2 mg/L	0.0019 J	
USS-SW-H003-B-041317	17040461-053	Chromium, Hexavalent	0.010	UH	0.002	0.010	1	mg/L	0.01 UJ	
USS-SW-INTAKE-A-041317	17040461-054	Chromium	0.0020	J	0.0006	0.0020	2	2 mg/L	0.002 J	
USS-SW-INTAKE-A-041317	17040461-054	Chromium, Hexavalent	0.010	U	0.002	0.010	1	mg/L	0.01 U	
USS-SW-INTAKE-A-041317-D	17040461-055	Chromium	0.0018	J	0.0006	0.0020	2	2 mg/L	0.0018 J	
USS-SW-INTAKE-B-041317	17040461-056	Chromium	0.0019	J	0.0006	0.0020	2	2 mg/L	0.0019 J	
USS-SW-INTAKE-B-041317	17040461-056	Chromium, Hexavalent	0.010	U	0.002	0.010	1	mg/L	0.01 U	

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	SOE 0001 1704 201					
Document Tracking No.	1730E	וטט וויס.	S05-0001-1704-201					
Data Reviewer	Hang N. Elis II	Quality Control	01000					
(signature and date)	Hang	Reviewer	23 May 2017					
(Signature and date)	17 May 2017	(signature and date)						
Laboratory Report No.	50169099	Laboratory	Pace Analytical/Indianapolis, Indiana					
Analyses	Total chromium by EPA SW-846 Method 6010 and hexavalent chromium by EPA SW-846 Method 7196A							
Samples and Matrix	10 Soil samples and 2 field duplicates							
Field Duplicate Pairs	USS-SS-PB02-041817/USS-SS-PB02-041817-D and USS-SS-WB01-041817/USS-SS-WB01-041817-D							
Field Blanks	None							

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

No results were rejected, but some were qualified. All may be used as qualified.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

Within Criteria	Exceedance/Notes
NA	

Initial Calibration:

Within Criteria	Exceedance/Notes
Υ	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Y	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
Υ	

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

interreteries eneck samples (165) (161)	netallo omyj.
Within Criteria	Exceedance/Notes
Υ	
<u> </u>	
System monitoring compounds (surrog	gates and labeled compounds):
Within	Exceedance/Notes
Criteria	Exceedance/Notes
NA	
_	
MS/MSD:	
Within	Exceedance/Notes
Criteria	
Υ	
Post digestion spikes:	
Within	Exceedance/Notes
Criteria	·
Υ	
Serial dilutions:	
Within Criteria	Exceedance/Notes
NA	
NA	
_aboratory duplicates:	
Within	
Criteria	Exceedance/Notes
Υ	
1	

Field duplicates:

Within Criteria	Exceedance/Notes
N	The field duplicate pair from USS-SS-PB02-041817 exceeded the QAPP limit, with the primary sample yielding a considerably higher
	concentration of total chromium than the field duplicate pair. Because of this uncertainty as to the true concentration of
	chromium, the results in that pair were qualified as estimated and flagged "J".

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes
NA	

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:

Within Criteria	Exceedance/Notes
Υ	

Target analyte identification:

Within Criteria	Exceedance/Notes
NA	

Analyte quantitation and MDLs/RLs:

Within Criteria	Exceedance/Notes
Υ	Detected results less than sample reporting limits are not included.

Tentatively identified compounds:

	y racinities composition
Within	Exceedance/Notes
Criteria	Exceedance/ Notes
NA	

System performance and instrument stability:

Within Criteria	Exceedance/Notes
Υ	

Other [specify]:

Other [spe	wiiyj.
Within	Fuere deman / Nieton
Criteria	Exceedance/Notes
NA	

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Hex Chrome Release Soil Results Pace Report No. 50169099

Sample ID	Lab ID	Parameter	Lab Result	Lab Qualifier	DL	RL	DF	Units	Val. Results Val. Qualifiers
USS-SS-BB01-041817	50169099003	Chromium, Hexavalent		U	0.63	1.9	1	mg/kg	1.9 U
USS-SS-BB01-041817	50169099003	Chromium	2.7		0.44	0.87	1	mg/kg	2.7
USS-SS-BB02-041817	50169099004	Chromium, Hexavalent		U	0.64	2.0	1	mg/kg	2.0 U
USS-SS-BB02-041817	50169099004	Chromium	7.3		0.48	0.97	1	mg/kg	7.3
USS-SS-OD01-041817	50169099007	Chromium, Hexavalent		U	0.64	1.9	1	mg/kg	1.9 U
USS-SS-OD01-041817	50169099007	Chromium	1.3		0.44	0.88	1	mg/kg	1.3
USS-SS-OD02-041817	50169099008	Chromium, Hexavalent		U	0.63	1.9	1	mg/kg	1.9 U
USS-SS-OD02-041817	50169099008	Chromium	4.3		0.44	0.89	1	mg/kg	4.3
USS-SS-PB01-041817	50169099001	Chromium, Hexavalent		U	0.64	2.0	1	mg/kg	2.0 U
USS-SS-PB01-041817	50169099001	Chromium	1.8		0.46	0.93	1	mg/kg	1.8
USS-SS-PB02-041817	50169099002	Chromium, Hexavalent		U	0.64	2.0	1	mg/kg	2.0 U
USS-SS-PB02-041817	50169099002	Chromium	9.2		0.47	0.94	1	mg/kg	9.2 J
USS-SS-PB02-041817-D	50169099012	Chromium, Hexavalent		U	0.66	2.0	1	mg/kg	2.0 U
USS-SS-PB02-041817-D	50169099012	Chromium	3.6		0.42	0.83	1	mg/kg	3.6 J
USS-SS-PL01-041817	50169099009	Chromium, Hexavalent		U	0.63	1.9	1	mg/kg	1.9 U
USS-SS-PL01-041817	50169099009	Chromium	2.7		0.49	0.98	1	mg/kg	2.7
USS-SS-PL02-041817	50169099010	Chromium, Hexavalent		U	0.64	2.0	1	mg/kg	2.0 U
USS-SS-PL02-041817	50169099010	Chromium	4.8		0.45	0.91	1	mg/kg	4.8
USS-SS-WB01-041817	50169099005	Chromium, Hexavalent		U	0.64	1.9	1	mg/kg	1.9 U
USS-SS-WB01-041817	50169099005	Chromium	7.4		0.47	0.93	1	mg/kg	7.4
USS-SS-WB01-041817-D	50169099011	Chromium, Hexavalent		U	0.66	2.0	1	mg/kg	2.0 U
USS-SS-WB01-041817-D	50169099011	Chromium	3.8		0.45	0.89	1	mg/kg	3.8
USS-SS-WB02-041817	50169099006	Chromium, Hexavalent		U	0.65	2.0	1	mg/kg	2.0 U
USS-SS-WB02-041817	50169099006	Chromium	2.4		0.48	0.96	1	mg/kg	2.4

May 24, 2017

Andrew Maguire
On-Scene Coordinator
U.S. Environmental Protection Agency Region 5
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Subject: Data Validation Report

U.S. Steel Hexavalent Chrome Release

EPA Contract No. EP-S5-13-01

Technical Direction Document No. S05-0001-1704-201

Document Tracking No. 1745

Dear Mr. Maguire:

Tetra Tech, Inc. (Tetra Tech) is submitting this Data Validation Report for one surface water sample collected at the U.S. Steel Hexavalent Chrome Release Site. The sample was collected on April 11, 2017, and was analyzed for hexavalent chromium by STAT Analysis Corporation. The laboratory data package was received on May 23.

Analytical data were evaluated in general accordance with the EPA Contract Laboratory Program (CLP) National Functional Guidelines (NFG) Inorganic Superfund Data Review (January 2017).

The result was not qualified and may be used as reported.

If you have any questions regarding this data validation report, please call me at (312) 201-7756.

Sincerely,

START Chemist

Hang N. Elis II

Enclosure

cc: Kevin Scott, Tetra Tech Program Manager

Justin Button-Hutchens, Tetra Tech Project Manager

TDD File

ATTACHMENT 1

DATA VALIDATION REPORT STAT ANALYTICAL REPORT 17040375

Site Name	U.S. Steel Hexavalent Chrome Release	TDD No.	S05-0001-1704-201
Document Tracking No.	1745	וטט ווסט.	505-0001-1704-201
Data Reviewer (signature and date)	Hang N. Elis III	Quality Control Reviewer (signature and date)	Jhn Peig 24 May 2017
Laboratory Report No.	17040375	Laboratory	STAT Analysis/Chicago
Analyses	Hexavalent Chromium by EPA SW-846 Met	hod 7196A	
Samples and Matrix	1 Surface water sample		
Field Duplicate Pairs	None		
Field Blanks	None		_

INTRODUCTION

This checklist summarizes the Stage 4 validation performed on the subject laboratory report, in accordance with the U.S. Environmental Protection Agency (EPA) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (January 2009). Analytical data were evaluated in general accordance with the EPA *National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review* (January 2017).

OVERALL EVALUATION

Despite some minor irregularities, the result was not qualified and may be used as reported.

Data completeness:

Within Criteria	Exceedance/Notes
Υ	

Sample preservation, receipt, and holding times:

Within Criteria	Exceedance/Notes
Υ	

Instrument Performance Checks:

With Crite		Exceedance/Notes
NA	4	

Initial Calibration:

Within Criteria	Exceedance/Notes
Y	

Continuing Calibration:

Within Criteria	Exceedance/Notes
Υ	

Calibration Verification:

Within Criteria	Exceedance/Notes
Υ	

Method blanks:

Within Criteria	Exceedance/Notes
N	The aqueous method blank yielded a hexavalent chromium concentration just above the detection limit. The field sample result was much greater than that so no qualifications were applied.

Field blanks:

Within Criteria	Exceedance/Notes
NA	

Interference Check Samples (ICS) (ICP metals only):

Within Criteria	Exceedance/Notes
NA	

System monitoring compounds (surrogates and labeled compounds):

Within Criteria	Exceedance/Notes
NA	

MS/MSD:

Within Criteria	Exceedance/Notes
N	Recoveries could not be determined because the unspiked sample contained more than 4 times the amount of the spike. The relative percent difference between the results was only 1.45 percent, so no qualifications were applied.

Post digestion spikes:

Within Criteria	Exceedance/Notes
NA	

Serial dilutions:

Vithin riteria	Exceedance/Notes
NA	

Laboratory duplicates:

Within Criteria	Fxceedance/Notes
NA	

Field duplicates:

Within Criteria	Exceedance/Notes
NA	

LCSs/LCSDs:

Within Criteria	Exceedance/Notes
Υ	

Sample dilutions:

Within Criteria	Exceedance/Notes
Υ	Sample was analyzed at a 10-fold dilution

Re-extraction and reanalysis:

Within Criteria	Exceedance/Notes
NA	

Second column confirmation (GC and HPLC analyses only):

Within Criteria	Exceedance/Notes
NA	

Internal Standards:		
Within	Exceedance/Notes	
Criteria	Exceedance/Notes	
NA		
Target analyte identification:		
Within	Exceedance/Notes	
Criteria	Exceedance/Notes	
NA		
Analyte quantitation and MDLs/RLs:		
Within	Exceedance/Notes	
Criteria	Exceedance/ Notes	
Y		
Tentatively identified compounds:		
Within	Exceedance/Notes	
Criteria	Exceedance/Notes	
NA		
System performance and instrument sta	ability:	
Within	Exceedance/Notes	
Criteria	LACEEdance/ Notes	
Y		
Other [specify]:		
Within	Exceedance/Notes	

Criteria NA

Overall Qualifications:

See results summary pages attached for changes to the laboratory qualifiers based upon this validation. The following is a list of qualifiers and definitions that may be used for the validation of this data package:

J	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample.
J+	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased high.
J-	The analyte was positively identified; the associated value is the approximate concentration of the analyte in the sample and may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated value is the approximate concentration of the analyte in the sample.
R	The sample result is rejected as unusable due to serious deficiencies in one or more quality control criteria. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit).
UJ	The analyte was analyzed for, but was not detected at or above the associated value (reporting limit), which is considered approximate due to deficiencies in one or more quality control criteria.

U.S. Steel Surface Water Results STAT Report 17040375

Sample ID Lab iD Chemical_Name Lab Result :Lab Qualifier DL RL DF Units Val. Results Val. Qualifiers USS-SW-001-041117 17040375-001 Chromium, Hexavalent 0.99 0.02 0.10 10 mg/L 0.99